Suppr超能文献

利用多模态方法,借助大语言模型和面部表情进行抑郁症检测。

Harnessing multimodal approaches for depression detection using large language models and facial expressions.

作者信息

Sadeghi Misha, Richer Robert, Egger Bernhard, Schindler-Gmelch Lena, Rupp Lydia Helene, Rahimi Farnaz, Berking Matthias, Eskofier Bjoern M

机构信息

Machine Learning and Data Analytics Lab (MaD Lab), Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91052, Germany.

Chair of Visual Computing (LGDV), Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, 91058, Germany.

出版信息

Npj Ment Health Res. 2024 Dec 23;3(1):66. doi: 10.1038/s44184-024-00112-8.

Abstract

Detecting depression is a critical component of mental health diagnosis, and accurate assessment is essential for effective treatment. This study introduces a novel, fully automated approach to predicting depression severity using the E-DAIC dataset. We employ Large Language Models (LLMs) to extract depression-related indicators from interview transcripts, utilizing the Patient Health Questionnaire-8 (PHQ-8) score to train the prediction model. Additionally, facial data extracted from video frames is integrated with textual data to create a multimodal model for depression severity prediction. We evaluate three approaches: text-based features, facial features, and a combination of both. Our findings show the best results are achieved by enhancing text data with speech quality assessment, with a mean absolute error of 2.85 and root mean square error of 4.02. This study underscores the potential of automated depression detection, showing text-only models as robust and effective while paving the way for multimodal analysis.

摘要

检测抑郁症是心理健康诊断的关键组成部分,准确评估对于有效治疗至关重要。本研究引入了一种新颖的、完全自动化的方法,使用E-DAIC数据集预测抑郁症严重程度。我们采用大语言模型(LLMs)从访谈记录中提取与抑郁症相关的指标,利用患者健康问卷-8(PHQ-8)评分来训练预测模型。此外,从视频帧中提取的面部数据与文本数据相结合,创建一个用于抑郁症严重程度预测的多模态模型。我们评估了三种方法:基于文本的特征、面部特征以及两者的组合。我们的研究结果表明,通过语音质量评估增强文本数据可取得最佳结果,平均绝对误差为2.85,均方根误差为4.02。本研究强调了自动检测抑郁症的潜力,表明仅文本模型稳健且有效,同时为多模态分析铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1dc/11666580/e9f8a882c610/44184_2024_112_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验