Cai Weiji, Jiang Beier, Yin Yichen, Ma Lei, Li Tao, Chen Jing
School of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Road, Yinchuan, 750004, Ningxia, China.
Key Laboratory of Fertility Maintenance Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
Mol Divers. 2024 Dec 23. doi: 10.1007/s11030-024-11067-5.
The development of phosphorylation-suppressing inhibitors targeting Signal Transducer and Activator of Transcription 3 (STAT3) represents a promising therapeutic strategy for non-small cell lung cancer (NSCLC). In this study, a generative model was developed using transfer learning and virtual screening, leveraging a comprehensive dataset of STAT3 inhibitors to explore the chemical space for novel candidates. This approach yielded a chemically diverse library of compounds, which were prioritized through molecular docking and molecular dynamics (MD) simulations. Among the identified candidates, the HG110 molecule demonstrated potent suppression of STAT3 phosphorylation at Tyr705 and inhibited its nuclear translocation in IL6-stimulated H441 cells. Rigorous MD simulations further confirmed the stability and interaction profiles of top candidates within the STAT3 binding site. Notably, HG106 and HG110 exhibited superior binding affinities and stable conformations, with favorable interactions involving key residues in the STAT3 binding pocket, outperforming known inhibitors. These findings underscore the potential of generative deep learning to expedite the discovery of selective STAT3 inhibitors, providing a compelling pathway for advancing NSCLC therapies.
开发针对信号转导和转录激活因子3(STAT3)的磷酸化抑制抑制剂是一种很有前景的非小细胞肺癌(NSCLC)治疗策略。在本研究中,利用迁移学习和虚拟筛选开发了一种生成模型,利用STAT3抑制剂的综合数据集探索新型候选物的化学空间。这种方法产生了一个化学性质多样的化合物库,通过分子对接和分子动力学(MD)模拟对其进行了优先级排序。在鉴定出的候选物中,HG110分子在IL6刺激的H441细胞中表现出对Tyr705处STAT3磷酸化的有效抑制,并抑制其核转位。严格的MD模拟进一步证实了顶级候选物在STAT3结合位点内的稳定性和相互作用特征。值得注意的是,HG106和HG110表现出优异的结合亲和力和稳定的构象,与STAT3结合口袋中的关键残基存在有利的相互作用,优于已知抑制剂。这些发现强调了生成式深度学习在加速选择性STAT3抑制剂发现方面的潜力,为推进NSCLC治疗提供了一条引人注目的途径。