Suppr超能文献

用于临床应用的蛋白质生物标志物选择的决策树

Decision Tree for Protein Biomarker Selection for Clinical Applications.

作者信息

Waury Katharina

机构信息

Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

出版信息

Methods Mol Biol. 2025;2884:355-368. doi: 10.1007/978-1-0716-4298-6_21.

Abstract

Discovery of novel protein biomarkers for clinical applications is an active research field across a manifold of diseases. Despite some successes and progress, the biomarker development pipeline still frequently ends in failure. Biomarker candidates that are discovered by appropriate technologies such as unbiased mass spectrometry cannot be validated or translated to immunoassays in many cases. Selection of strong disease biomarker candidates that further constitute suitable targets for antibody binding in immunoassays is thus important to allow routine clinical use. This essential selection step can be supported and rationalized using bioinformatics tools such as protein databases. Here, we present a workflow in the form of decision trees to computationally investigate biomarker candidates and their available affinity reagents in depth. This analysis can identify the most promising biomarker candidates for assay development, while minimal time and effort are required.

摘要

发现用于临床应用的新型蛋白质生物标志物是一个涉及多种疾病的活跃研究领域。尽管取得了一些成功和进展,但生物标志物开发流程仍常常以失败告终。通过诸如无偏质谱等适当技术发现的生物标志物候选物在许多情况下无法得到验证或转化为免疫测定法。因此,选择强大的疾病生物标志物候选物,这些候选物进一步构成免疫测定中抗体结合的合适靶点,对于实现常规临床应用很重要。可以使用诸如蛋白质数据库等生物信息学工具来支持这一关键选择步骤并使其合理化。在这里,我们以决策树的形式呈现一种工作流程,以深入地通过计算研究生物标志物候选物及其可用的亲和试剂。这种分析可以识别出最有前景的用于分析方法开发的生物标志物候选物,同时所需的时间和精力最少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验