Suppr超能文献

临床试验中的基因组和蛋白质组学生物标志物格局

Genomic and proteomic biomarker landscape in clinical trials.

作者信息

Piñero Janet, Rodriguez Fraga Pablo S, Valls-Margarit Jordi, Ronzano Francesco, Accuosto Pablo, Lambea Jane Ricard, Sanz Ferran, Furlong Laura I

机构信息

MedBioinformatics Solutions SL, Almogàvers 165, 08018 Barcelona, Spain.

Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), Dept. of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain.

出版信息

Comput Struct Biotechnol J. 2023 Mar 16;21:2110-2118. doi: 10.1016/j.csbj.2023.03.014. eCollection 2023.

Abstract

The use of molecular biomarkers to support disease diagnosis, monitor its progression, and guide drug treatment has gained traction in the last decades. While only a dozen biomarkers have been approved for their exploitation in the clinic by the FDA, many more are evaluated in the context of translational research and clinical trials. Furthermore, the information on which biomarkers are measured, for which purpose, and in relation to which conditions are not readily accessible: biomarkers used in clinical studies available through resources such as ClinicalTrials.gov are described as free text, posing significant challenges in finding, analyzing, and processing them by both humans and machines. We present a text mining strategy to identify proteomic and genomic biomarkers used in clinical trials and classify them according to the methodologies by which they are measured. We find more than 3000 biomarkers used in the context of 2600 diseases. By analyzing this dataset, we uncover patterns of use of biomarkers across therapeutic areas over time, including the biomarker type and their specificity. These data are made available at the Clinical Biomarker App at https://www.disgenet.org/biomarkers/, a new portal that enables the exploration of biomarkers extracted from the clinical studies available at ClinicalTrials.gov and enriched with information from the scientific literature. The App features several metrics that assess the specificity of the biomarkers, facilitating their selection and prioritization. Overall, the Clinical Biomarker App is a valuable and timely resource about clinical biomarkers, to accelerate biomarker discovery, development, and application.

摘要

在过去几十年中,使用分子生物标志物来支持疾病诊断、监测疾病进展并指导药物治疗越来越受到关注。虽然美国食品药品监督管理局(FDA)仅批准了十几种生物标志物用于临床应用,但在转化研究和临床试验中评估的生物标志物要多得多。此外,关于测量哪些生物标志物、用于何种目的以及与哪些疾病相关的信息并不容易获取:通过ClinicalTrials.gov等资源获取的临床研究中使用的生物标志物以自由文本形式描述,这给人类和机器查找、分析和处理这些生物标志物带来了重大挑战。我们提出了一种文本挖掘策略,以识别临床试验中使用的蛋白质组学和基因组学生物标志物,并根据其测量方法对它们进行分类。我们发现超过3000种生物标志物用于2600种疾病的研究。通过分析这个数据集,我们揭示了随着时间推移各治疗领域生物标志物的使用模式,包括生物标志物类型及其特异性。这些数据可在https://www.disgenet.org/biomarkers/的临床生物标志物应用程序中获取,这是一个新的门户网站,能够探索从ClinicalTrials.gov的临床研究中提取并丰富了科学文献信息的生物标志物。该应用程序具有几个评估生物标志物特异性的指标,便于对其进行选择和排序。总体而言,临床生物标志物应用程序是有关临床生物标志物的宝贵且及时的资源,有助于加速生物标志物的发现、开发和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d6c/10036891/ea9cd563ba86/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验