Su Guangfei, Zheng Liushuai, Wang Cheng, Wang Shuaida, Wen Qi, Chen Jiazheng, Jia Lanlan, Guo Yaoxian, Li Feng, Huang Hanjin, Li Junyang
Department of Electronic Engineering, Ocean University of China, Qingdao, 266100, China.
Computing Network Research Lab, Quantum Science and Technology Yangtze River Delta Industrial Innovation Center, Suzhou, 215000, China.
Small. 2025 Jan;21(4):e2408407. doi: 10.1002/smll.202408407. Epub 2024 Dec 23.
Magnetic microrobot swarms have broad application prospects in human-targeted therapy. However, the automated assembly and actuation of functional large-volume swarms is a challenging topic. Chlorella with self-fluorescence and biodegradability is used in this paper as a template to prepare magnetic Chlorella-based microrobots through magnetron sputtering. The assembly and actuation of large-volume Chlorella swarms are realized using a magnetic tweezer system with a robust magnetic field. Experimental results indicate that the magnetic Chlorella swarms (MCS) possess excellent degradation capability and mobility, enabling automatic navigation in various scenarios. Notably, the MCS successfully moved on the spiral channel containing bovine serum and effectively crossed the simulated channel. Furthermore, in vitro studies of real articular cartilage fragments have revealed the motion capacity of the MCS. This research provides a functional microrobot swarm platform for targeted delivery and precision therapy.
磁性微型机器人群体在靶向人体治疗方面具有广阔的应用前景。然而,功能性大容量群体的自动组装和驱动是一个具有挑战性的课题。本文以具有自荧光和生物降解性的小球藻为模板,通过磁控溅射制备基于磁性小球藻的微型机器人。利用具有强磁场的磁镊系统实现了大容量小球藻群体的组装和驱动。实验结果表明,磁性小球藻群体(MCS)具有优异的降解能力和移动性,能够在各种场景中自动导航。值得注意的是,MCS成功地在含有牛血清的螺旋通道上移动,并有效地穿过了模拟通道。此外,对真实关节软骨碎片的体外研究揭示了MCS的运动能力。本研究为靶向递送和精准治疗提供了一个功能性微型机器人群体平台。