Suppr超能文献

低强度机械信号以细胞特异性方式促进增殖:定制非药物策略以提高生物制造产量。

Low intensity mechanical signals promote proliferation in a cell-specific manner: Tailoring a non-drug strategy to enhance biomanufacturing yields.

作者信息

Chan M Ete, Ashdown Christopher, Strait Lia, Pasumarthy Sishir, Hassan Abdullah, Crimarco Steven, Singh Chanpreet, Patel Vihitaben S, Pagnotti Gabriel, Khan Omor, Uzer Gunes, Rubin Clinton T

机构信息

Department of Biomedical Engineering, College of Engineering and Applied Sciences, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794-5280, USA.

Medical Scientist Training Program, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.

出版信息

Mechanobiol Med. 2024 Dec;2(4). doi: 10.1016/j.mbm.2024.100080. Epub 2024 Jul 2.

Abstract

Biomanufacturing relies on living cells to produce biotechnology-based therapeutics, tissue engineering constructs, vaccines, and a vast range of agricultural and industrial products. With the escalating demand for these bio-based products, any process that could improve yields and shorten outcome timelines by accelerating cell proliferation would have a significant impact across the discipline. While these goals are primarily achieved using or strategies, harnessing cell mechanosensitivity represents a promising - albeit less studied - pathway to promote bioprocessing endpoints, yet identifying which mechanical parameters influence cell activities has remained elusive. We tested the hypothesis that mechanical signals, delivered non-invasively using low-intensity vibration (LIV; <1 g, 10-500 Hz), will enhance cell expansion, and determined that any unique signal configuration was not equally influential across a range of cell types. Varying frequency, intensity, duration, refractory period, and daily doses of LIV increased proliferation in Chinese Hamster Ovary (CHO)-adherent cells (+79% in 96 hr) using a particular set of LIV parameters (0.2 g, 500 Hz, 3 × 30 min/d, 2 hr refractory period), yet this same mechanical input proliferation in CHO-suspension cells (-13%). Another set of LIV parameters (30 Hz, 0.7 g, 2 × 60 min/d, 2 hr refractory period) however, were able to increase the proliferation of CHO-suspension cells by 210% and T-cells by 20.3%. Importantly, we also reported that T-cell response to LIV was in-part dependent upon AKT phosphorylation, as inhibiting AKT phosphorylation reduced the proliferative effect of LIV by over 60%, suggesting that suspension cells utilize mechanism(s) similar to adherent cells to sense specific LIV signals. Particle image velocimetry combined with finite element modeling showed high transmissibility of these signals across fluids (>90%), and LIV effectively scaled up to T75 flasks. Ultimately, when LIV is tailored to the target cell population, it's highly efficient transmission across media represents a means to non-invasively augment biomanufacturing endpoints for both adherent and suspended cells, and holds immediate applications, ranging from small-scale, patient-specific personalized medicine to large-scale commercial biocentric production challenges.

摘要

生物制造依靠活细胞来生产基于生物技术的治疗药物、组织工程构建体、疫苗以及大量的农业和工业产品。随着对这些生物基产品的需求不断增加,任何能够通过加速细胞增殖来提高产量并缩短生产周期的方法都将对整个学科产生重大影响。虽然这些目标主要通过化学或基因策略来实现,但利用细胞机械敏感性是促进生物加工终点的一条有前景的途径,尽管相关研究较少。然而,确定哪些机械参数会影响细胞活动仍然很困难。我们测试了这样一个假设:使用低强度振动(LIV;<1 g,10 - 500 Hz)非侵入性地传递机械信号会增强细胞扩增,并确定任何独特的信号配置在一系列细胞类型中的影响并不相同。使用一组特定的LIV参数(0.2 g,500 Hz,3×30分钟/天,2小时不应期),改变LIV的频率、强度、持续时间、不应期和每日剂量,可使中国仓鼠卵巢(CHO)贴壁细胞的增殖增加(96小时内增加79%),但相同的机械输入却使CHO悬浮细胞的增殖减少(-13%)。然而,另一组LIV参数(30 Hz,0.7 g,2×60分钟/天,2小时不应期)能够使CHO悬浮细胞的增殖增加210%,使T细胞的增殖增加20.3%。重要的是,我们还报告说,T细胞对LIV的反应部分依赖于AKT磷酸化,因为抑制AKT磷酸化会使LIV的增殖作用降低超过60%,这表明悬浮细胞利用与贴壁细胞类似的机制来感知特定的LIV信号。粒子图像测速技术与有限元建模相结合表明,这些信号在流体中的传递性很高(>90%),并且LIV能够有效地扩大到T75培养瓶。最终,当LIV针对目标细胞群体进行调整时,其在培养基中的高效传递代表了一种非侵入性增强贴壁细胞和悬浮细胞生物制造终点的方法,并具有直接的应用价值,从小规模、针对患者的个性化药物到大规模商业生物中心生产挑战等领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/12e1/12082170/c786b9668b42/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验