Suppr超能文献

利用深度学习对三维球体进行无标记分选的高通量平台。

High-throughput platform for label-free sorting of 3D spheroids using deep learning.

作者信息

Sampaio da Silva Claudia, Boos Julia Alicia, Goldowsky Jonas, Blache Manon, Schmid Noa, Heinemann Tim, Netsch Christoph, Luongo Francesca, Boder-Pasche Stéphanie, Weder Gilles, Pueyo Moliner Alba, Samsom Roos-Anne, Marsee Ary, Schneeberger Kerstin, Mirsaidi Ali, Spee Bart, Valentin Thomas, Hierlemann Andreas, Revol Vincent

机构信息

Automated Sample Handling Group, CSEM SA Centre Suisse d'Electronique et de Microtechnique, Neuchâtel, Switzerland.

Bio Engineering Laboratory, Department Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.

出版信息

Front Bioeng Biotechnol. 2024 Dec 9;12:1432737. doi: 10.3389/fbioe.2024.1432737. eCollection 2024.

Abstract

End-stage liver diseases have an increasing impact worldwide, exacerbated by the shortage of transplantable organs. Recognized as one of the promising solutions, tissue engineering aims at recreating functional tissues and organs . The integration of bioprinting technologies with biological 3D models, such as multi-cellular spheroids, has enabled the fabrication of tissue constructs that better mimic complex structures and functionality of organs. However, the lack of methods for large-scale production of homogeneous spheroids has hindered the upscaling of tissue fabrication. In this work, we introduce a fully automated platform, designed for high-throughput sorting of 3D spheroids based on label-free analysis of brightfield images. The compact platform is compatible with standard biosafety cabinets and includes a custom-made microscope and two fluidic systems that optimize single spheroid handling to enhance sorting speed. We use machine learning to classify spheroids based on their bioprinting compatibility. This approach enables complex morphological analysis, including assessing spheroid viability, without relying on invasive fluorescent labels. Furthermore, we demonstrate the efficacy of transfer learning for biological applications, for which acquiring large datasets remains challenging. Utilizing this platform, we efficiently sort mono-cellular and multi-cellular liver spheroids, the latter being used in bioprinting applications, and confirm that the sorting process preserves viability and functionality of the spheroids. By ensuring spheroid homogeneity, our sorting platform paves the way for standardized and scalable tissue fabrication, advancing regenerative medicine applications.

摘要

终末期肝病在全球范围内的影响日益增大,可移植器官的短缺使这一情况更加恶化。组织工程被认为是一种有前景的解决方案之一,其目标是再造功能性组织和器官。生物打印技术与生物三维模型(如多细胞球体)的整合,使得能够制造出更能模拟器官复杂结构和功能的组织构建体。然而,缺乏大规模生产均匀球体的方法阻碍了组织制造的扩大规模。在这项工作中,我们介绍了一个全自动平台,该平台设计用于基于明场图像的无标记分析对三维球体进行高通量分选。这个紧凑的平台与标准生物安全柜兼容,包括一台定制显微镜和两个流体系统,可优化单个球体的处理以提高分选速度。我们使用机器学习根据球体的生物打印兼容性对其进行分类。这种方法能够进行复杂的形态分析,包括评估球体的活力,而无需依赖侵入性荧光标记。此外,我们展示了迁移学习在生物应用中的有效性,对于生物应用来说,获取大型数据集仍然具有挑战性。利用这个平台,我们有效地分选了单细胞和多细胞肝脏球体,后者用于生物打印应用,并证实分选过程保留了球体的活力和功能。通过确保球体的均匀性,我们的分选平台为标准化和可扩展的组织制造铺平了道路,推动了再生医学应用的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4341/11663632/8760adc98953/fbioe-12-1432737-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验