Suppr超能文献

全身麻醉手术后识别慢性阿片类药物依赖的预测评分

Predictive Scores for Identifying Chronic Opioid Dependence After General Anesthesia Surgery.

作者信息

Sun Mingyang, Chen Wan-Ming, Lu Zhongyuan, Lv Shuang, Fu Ningning, Yang Yitian, Wang Yangyang, Miao Mengrong, Wu Szu-Yuan, Zhang Jiaqiang

机构信息

Department of Anesthesiology and Perioperative Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China.

Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.

出版信息

J Pain Res. 2024 Dec 19;17:4421-4432. doi: 10.2147/JPR.S471040. eCollection 2024.

Abstract

PURPOSE

To address the prevalence and risk factors of postoperative chronic opioid dependence, focusing on the development of a predictive scoring system to identify high-risk populations.

METHODS

We analyzed data from the Taiwan Health Insurance Research Database spanning January 2016 to December 2018, encompassing adults undergoing major elective surgeries with general anesthesia. Patient demographics, surgical details, comorbidities, and preoperative medication use were scrutinized. Wu and Zhang's scores, a predictive system, were developed through a stepwise multivariate model, incorporating factors significantly linked to chronic opioid dependence. Internal validation was executed using bootstrap sampling.

RESULTS

Among 111,069 patients, 1.6% developed chronic opioid dependence postoperatively. Significant risk factors included age, gender, surgical type, anesthesia duration, preoperative opioid use, and comorbidities. Wu and Zhang's scores demonstrated good predictive accuracy (AUC=0.83), with risk categories (low, moderate, high) showing varying susceptibility (0.7%, 1.4%, 3.5%, respectively). Internal validation confirmed the model's stability and potential applicability to external populations.

CONCLUSION

This study provides a comprehensive understanding of postoperative chronic opioid dependence and introduces an effective predictive scoring system. The identified risk factors and risk stratification allow for early detection and targeted interventions, aligning with the broader initiative to enhance patient outcomes, minimize societal burdens, and contribute to the nuanced management of postoperative pain.

摘要

目的

探讨术后慢性阿片类药物依赖的患病率及危险因素,重点是开发一种预测评分系统以识别高危人群。

方法

我们分析了台湾健康保险研究数据库中2016年1月至2018年12月的数据,涵盖接受全身麻醉的择期大手术的成年人。仔细审查了患者的人口统计学、手术细节、合并症和术前用药情况。通过逐步多变量模型开发了预测系统吴和张评分,纳入了与慢性阿片类药物依赖显著相关的因素。使用自助抽样进行内部验证。

结果

在111,069名患者中,1.6%术后出现慢性阿片类药物依赖。显著的危险因素包括年龄、性别、手术类型、麻醉持续时间、术前阿片类药物使用和合并症。吴和张评分显示出良好的预测准确性(AUC = 0.83),风险类别(低、中、高)显示出不同的易感性(分别为0.7%、1.4%、3.5%)。内部验证证实了该模型的稳定性及其对外部人群的潜在适用性。

结论

本研究全面了解了术后慢性阿片类药物依赖情况,并引入了一种有效的预测评分系统。所确定的危险因素和风险分层有助于早期发现和针对性干预,符合改善患者结局、减轻社会负担以及促进术后疼痛精细化管理的更广泛倡议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c033/11665436/d268189e6209/JPR-17-4421-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验