Suppr超能文献

SARS-CoV-2 刺突蛋白/人 ACE2 复合物界面的结构建模可以识别与传播性增加相关的高亲和力变体。

Structural Modeling of the SARS-CoV-2 Spike/Human ACE2 Complex Interface can Identify High-Affinity Variants Associated with Increased Transmissibility.

机构信息

Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States.

Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States; NYU Abu Dhabi Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates.

出版信息

J Mol Biol. 2021 Jul 23;433(15):167051. doi: 10.1016/j.jmb.2021.167051. Epub 2021 May 14.

Abstract

The COVID-19 pandemic has triggered concerns about the emergence of more infectious and pathogenic viral strains. As a public health measure, efficient screening methods are needed to determine the functional effects of new sequence variants. Here we show that structural modeling of SARS-CoV-2 Spike protein binding to the human ACE2 receptor, the first step in host-cell entry, predicts many novel variant combinations with enhanced binding affinities. By focusing on natural variants at the Spike-hACE2 interface and assessing over 700 mutant complexes, our analysis reveals that high-affinity Spike mutations (including N440K, S443A, G476S, E484R, G502P) tend to cluster near known human ACE2 recognition sites (K31 and K353). These Spike regions are structurally flexible, allowing certain mutations to optimize interface interaction energies. Although most human ACE2 variants tend to weaken binding affinity, they can interact with Spike mutations to generate high-affinity double mutant complexes, suggesting variation in individual susceptibility to infection. Applying structural analysis to highly transmissible variants, we find that circulating point mutations S477N, E484K and N501Y form high-affinity complexes (~40% more than wild-type). By combining predicted affinities and available antibody escape data, we show that fast-spreading viral variants exploit combinatorial mutations possessing both enhanced affinity and antibody resistance, including S477N/E484K, E484K/N501Y and K417T/E484K/N501Y. Thus, three-dimensional modeling of the Spike/hACE2 complex predicts changes in structure and binding affinity that correlate with transmissibility and therefore can help inform future intervention strategies.

摘要

新冠疫情引发了人们对更具传染性和致病性的病毒株出现的担忧。作为公共卫生措施,需要有效的筛选方法来确定新序列变异的功能影响。在这里,我们展示了 SARS-CoV-2 刺突蛋白与人类 ACE2 受体结合的结构建模,这是宿主细胞进入的第一步,预测了许多新的变体组合,具有增强的结合亲和力。通过关注刺突蛋白与人 ACE2 界面的天然变体,并评估超过 700 个突变复合物,我们的分析表明,高亲和力的刺突突变(包括 N440K、S443A、G476S、E484R、G502P)倾向于聚集在已知的人类 ACE2 识别位点(K31 和 K353)附近。这些刺突区域结构灵活,允许某些突变来优化界面相互作用能。尽管大多数人类 ACE2 变体倾向于降低结合亲和力,但它们可以与刺突突变相互作用,产生高亲和力的双突变复合物,这表明个体感染易感性的差异。将结构分析应用于高传染性变体,我们发现循环点突变 S477N、E484K 和 N501Y 形成高亲和力复合物(比野生型高约 40%)。通过结合预测亲和力和可用的抗体逃逸数据,我们表明快速传播的病毒变体利用具有增强亲和力和抗体抗性的组合突变,包括 S477N/E484K、E484K/N501Y 和 K417T/E484K/N501Y。因此,刺突蛋白/ACE2 复合物的三维建模预测了结构和结合亲和力的变化,这些变化与传染性相关,因此可以帮助指导未来的干预策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8398/8118711/11c872363a3f/ga1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验