Suppr超能文献

基于CT的放射组学特征利用机器学习预测非小细胞肺癌中生物学相关基因表达

Machine Learning Enabled Prediction of Biologically Relevant Gene Expression Using CT-Based Radiomic Features in Non-Small Cell Lung Cancer.

作者信息

Sukhadia Shrey S, Sadee Christoph, Gevaert Olivier, Nagaraj Shivashankar H

机构信息

Centre for Genomics and Personalized Health and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.

Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA.

出版信息

Cancer Med. 2024 Dec;13(24):e70509. doi: 10.1002/cam4.70509.

Abstract

BACKGROUND

Non-small-cell lung cancer (NSCLC) remains a global health challenge, driving morbidity and mortality. The emerging field of radiogenomics utilizes statistical methods to correlate radiographic tumor features with genomic characteristics from biopsy samples. Radiomic techniques automate the precise extraction of imaging features from tumor regions in radiographic scans, which are subjected to machine learning (ML) to predict genomic attributes.

METHODS

In a retrospective study of two NSCLC patient cohorts separated by 5 years, we performed a radiogenomic analysis of previously disseminated data from 2018 (n = 116) and newly acquired data from 2023 (n = 44) using RNA sequencing and lung CT images. Combining the data from two cohorts post binarization (of gene expression) or batch normalization (of radiomic features) in each cohort proved to be a better approach as compared to training the model on one cohort and validating on the other.

RESULTS

Our ML-based radiogenomic modeling identified specific imaging features-wavelet, three-dimensional local binary patterns, and logarithmic sigma of gray-level variance-as predictive indicators for high (1) vs. low (0) gene expression of pivotal NSCLC-related genes: SLC35C1, BCL2L1, and MAPK1. These genes have recognized implications in a variety of biological pathways and mechanisms of drug resistance pertinent to NSCLC.

CONCLUSION

The successful integration of heterogeneous radiogenomic datasets underscores the potential of imaging biomarkers in uncovering NSCLC biological processes through gene expression profiles.

摘要

背景

非小细胞肺癌(NSCLC)仍然是一项全球性的健康挑战,导致发病和死亡。放射基因组学这一新兴领域利用统计方法将影像学肿瘤特征与活检样本的基因组特征相关联。放射组学技术可自动从放射影像扫描中的肿瘤区域精确提取影像特征,并通过机器学习(ML)来预测基因组属性。

方法

在一项对相隔5年的两个NSCLC患者队列的回顾性研究中,我们使用RNA测序和肺部CT图像,对2018年已发布的数据(n = 116)和2023年新获取的数据(n = 44)进行了放射基因组分析。与在一个队列上训练模型并在另一个队列上验证相比,在每个队列中对(基因表达)进行二值化或(放射组学特征)进行批归一化后合并两个队列的数据被证明是一种更好的方法。

结果

我们基于ML的放射基因组模型确定了特定的影像特征——小波、三维局部二值模式和灰度级方差的对数标准差——作为关键NSCLC相关基因SLC35C1、BCL2L1和MAPK1高(1)与低(0)基因表达的预测指标。这些基因在与NSCLC相关的多种生物学途径和耐药机制中具有公认的影响。

结论

异质放射基因组数据集的成功整合强调了影像生物标志物通过基因表达谱揭示NSCLC生物学过程的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0915/11667219/7f0c9f3050d0/CAM4-13-e70509-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验