Zhang Yanqi, Liu Mingyu, Luo Jinhua, Xu Zhongqing
Department of General Practice, Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200336, China.
Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China.
Discov Oncol. 2025 May 24;16(1):913. doi: 10.1007/s12672-025-02645-6.
Lung cancer remains a major global health threat, with its biological complexity and patient heterogeneity posing significant challenges. Novel machine learning approaches now offer effective tools to interpret complex biological information hierarchies, showing promise to transform lung cancer treatment approaches.
We analyzed comprehensive biological datasets from TCGA and other databases, integrating DNA, RNA, miRNA, protein, and metabolite information. Multiple machine learning methods were employed to build diagnostic tools, treatment response predictors, and survival estimation models.
Our machine learning approaches effectively distinguished cancer patients from healthy controls. Analysis identified unique molecular characteristics between lung cancer subtypes and discovered biomarkers that help predict treatment efficacy and patient prognosis. Adding clinical data to biological information significantly improved model accuracy and enhanced patient stratification.
This study marks significant progress toward precision cancer therapy by demonstrating how machine learning can help decode the complex biology of lung cancer.
肺癌仍然是全球主要的健康威胁,其生物学复杂性和患者异质性带来了重大挑战。新型机器学习方法现在提供了有效的工具来解读复杂的生物信息层次结构,有望改变肺癌的治疗方法。
我们分析了来自TCGA和其他数据库的综合生物学数据集,整合了DNA、RNA、miRNA、蛋白质和代谢物信息。采用多种机器学习方法构建诊断工具、治疗反应预测器和生存估计模型。
我们的机器学习方法有效地将癌症患者与健康对照区分开来。分析确定了肺癌亚型之间独特的分子特征,并发现了有助于预测治疗效果和患者预后的生物标志物。将临床数据添加到生物信息中显著提高了模型准确性,并增强了患者分层。
本研究通过展示机器学习如何帮助解码肺癌的复杂生物学,标志着在精准癌症治疗方面取得了重大进展。