Suppr超能文献

用于蛋白质分子精确结构分析的小楔形同步加速器晶体学的有用实验方面。

Useful experimental aspects of small-wedge synchrotron crystallography for accurate structure analysis of protein molecules.

作者信息

Hirata Kunio

机构信息

SR Life Science Instrumentation Team, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.

出版信息

Acta Crystallogr D Struct Biol. 2025 Jan 1;81(Pt 1):22-37. doi: 10.1107/S2059798324011987.

Abstract

Recent advances in low-emittance synchrotron X-ray technology and highly sensitive photon-counting detectors have revolutionized protein micro-crystallography in structural biology. These developments and improvements to sample-exchange robots and beamline control have paved the way for automated and efficient unattended data collection. This study analyzed protein crystal structures such as type 2 angiotensin II receptor, CNNM/CorC membrane proteins and polyhedral protein crystals using small-wedge synchrotron crystallography (SWSX), which dramatically improves measurement efficiency through automated measurement. We evaluated the data quality using SWSX, focusing on massive data collection'. In this context, massive' refers to data sets with a multiplicity exceeding 100. The findings could potentially lead to the development of more efficient experimental conditions, such as obtaining high-resolution data using a smaller number of crystals. We have demonstrated that the application of machine learning, a modern key component of data science, to classify data groups is an integral part of the analysis process and may play a crucial role in improving data quality. These results indicate that SWSX is one of the essential candidates for crystal structure analysis methods for difficult-to-analyze samples: it can enable diverse and complex protein functional analysis.

摘要

低发射率同步加速器X射线技术和高灵敏度光子计数探测器的最新进展彻底改变了结构生物学中的蛋白质微晶学。这些发展以及对样品交换机器人和束线控制的改进为自动化、高效无人值守的数据收集铺平了道路。本研究使用小楔形同步加速器晶体学(SWSX)分析了诸如2型血管紧张素II受体、CNNM/CorC膜蛋白和多面体蛋白晶体等蛋白质晶体结构,该技术通过自动测量极大地提高了测量效率。我们使用SWSX评估了数据质量,重点是“海量数据收集”。在此背景下,“海量”指的是多重性超过100的数据集。这些发现可能会促成更高效实验条件的发展,比如用更少的晶体获得高分辨率数据。我们已经证明,将机器学习(数据科学的一个现代关键组成部分)应用于数据组分类是分析过程的一个组成部分,并且可能在提高数据质量方面发挥关键作用。这些结果表明,SWSX是难以分析样品晶体结构分析方法的重要候选方法之一:它能够实现多样且复杂的蛋白质功能分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验