Suppr超能文献

一种基于心脏病诊所心肺运动试验区分非心源性胸痛的列线图。

A nomogram to distinguish noncardiac chest pain based on cardiopulmonary exercise testing in cardiology clinic.

作者信息

Xu Mingyu, Li Rui, Bai Bingqing, Liu Yuting, Zhou Haofeng, Liao Yingxue, Liu Fengyao, Cao Peihua, Geng Qingshan, Ma Huan

机构信息

Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.

Department of Internal Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China.

出版信息

BMC Med Inform Decis Mak. 2024 Dec 24;24(1):405. doi: 10.1186/s12911-024-02813-8.

Abstract

BACKGROUND

Psychological disorders, such as anxiety and depression, are considered to be one of the causes of noncardiac chest pain (NCCP). And these patients can be challenging to differentiate from coronary artery disease (CAD), leading to a considerable number of patients still undergoing angiography. We aim to develop a practical prediction model and nomogram using cardiopulmonary exercise testing (CPET), to help identify these patients.

METHODS

1,531 eligible patients' electronic medical record data were obtained from Guangdong Provincial People's Hospital. They were randomly divided into a training dataset (N = 918) and a testing dataset (N = 613) at a ratio of 6:4, and 595 cases without missing data were also selected from testing dataset to form a complete dataset. The training set is used to build the model, and the testing set and the complete set are used for internal validation. Eight machine learning (ML) methods are used to build the model and the best model is finally adopted.

RESULTS

The model built by logistic regression performed the best, and among the 29 parameters, six parameters were determined to be valuable parameters for establishing the diagnostic equation and nomogram. The nomogram showed favorable calibration and discrimination with an area under the receiver operating characteristic curve (AUC) of 0.857 in the training set, 0.851 in the testing set, and 0.848 in the complete set. Meanwhile, decision curve analysis demonstrated the clinical utility of the nomogram.

CONCLUSIONS

A nomogram using CPET to distinguish anxiety/depression from CAD was developed. It may optimize the disease management and improve patient prognosis.

摘要

背景

心理障碍,如焦虑和抑郁,被认为是非心源性胸痛(NCCP)的病因之一。这些患者与冠状动脉疾病(CAD)的鉴别具有挑战性,导致相当数量的患者仍在接受血管造影检查。我们旨在开发一种实用的预测模型和列线图,使用心肺运动试验(CPET)来帮助识别这些患者。

方法

从广东省人民医院获取1531例符合条件患者的电子病历数据。他们以6:4的比例随机分为训练数据集(N = 918)和测试数据集(N = 613),并从测试数据集中选取595例无缺失数据的病例组成完整数据集。训练集用于构建模型,测试集和完整集用于内部验证。使用八种机器学习(ML)方法构建模型,最终采用最佳模型。

结果

逻辑回归构建的模型表现最佳,在29个参数中,确定6个参数为建立诊断方程和列线图的有价值参数。列线图在训练集、测试集和完整集中的校准和鉴别效果良好,受试者操作特征曲线(AUC)下面积分别为0.857、0.851和0.848。同时,决策曲线分析证明了列线图的临床实用性。

结论

开发了一种使用CPET区分焦虑/抑郁与CAD的列线图。它可能优化疾病管理并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5beb/11667853/b8a2cb63d5de/12911_2024_2813_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验