Suppr超能文献

基于心肺运动试验的冠状动脉疾病严重程度预测列线图的建立与验证。

Development and Validation of a Nomogram for Predicting the Severity of Coronary Artery Disease Based on Cardiopulmonary Exercise Testing.

机构信息

Department of Cardiology, The First Hospital of Xingtai, Xingtai, Hebei Province, People's Republic of China.

Department of Cardiology, Xingtai People's Hospital, Xingtai, Hebei Province, People's Republic of China.

出版信息

Clin Appl Thromb Hemost. 2024 Jan-Dec;30:10760296241233562. doi: 10.1177/10760296241233562.

Abstract

As a major global health concern, coronary artery disease (CAD) demands precise, noninvasive diagnostic methods like cardiopulmonary exercise testing (CPET) for effective assessment and management, balancing the need for accurate disease severity evaluation with improved treatment decision-making. Our objective was to develop and validate a nomogram based on CPET parameters for noninvasively predicting the severity of CAD, thereby assisting clinicians in more effectively assessing patient conditions. This study analyzed 525 patients divided into training (367) and validation (183) cohorts, identifying key CAD severity indicators using least absolute shrinkage and selection operator (LASSO) regression. A predictive nomogram was developed, evaluated by average consistency index (C-index), the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA), confirming its reliability and clinical applicability. In our study, out of 25 variables, 6 were identified as significant predictors for CAD severity. These included age (OR = 1.053,  < .001), high-density lipoprotein (HDL, OR = 0.440,  = .002), hypertension (OR = 2.050,  = .007), diabetes mellitus (OR = 3.435,  < .001), anaerobic threshold (AT, OR = 0.837,  < .001), and peak kilogram body weight oxygen uptake (VO/kg, OR = 0.872,  < .001). The nomogram, based on these predictors, demonstrated strong diagnostic accuracy for assessing CAD severity, with AUC values of 0.939 in the training cohort and 0.840 in the validation cohort, and also exhibited significant clinical utility. The nomogram, which is based on CPET parameters, was useful for predicting the severity of CAD and assisted in risk stratification by offering a personalized, noninvasive diagnostic approach for clinicians.

摘要

作为一个主要的全球健康问题,冠心病(CAD)需要精确的、非侵入性的诊断方法,如心肺运动试验(CPET),以进行有效的评估和管理,在平衡准确评估疾病严重程度与改善治疗决策的需求。我们的目标是开发和验证一个基于 CPET 参数的列线图,用于无创预测 CAD 的严重程度,从而帮助临床医生更有效地评估患者病情。本研究分析了 525 名患者,分为训练队列(367 名)和验证队列(183 名),使用最小绝对收缩和选择算子(LASSO)回归识别关键 CAD 严重程度指标。开发了一个预测列线图,通过平均一致性指数(C 指数)、接收者操作特征曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)进行评估,证实其可靠性和临床适用性。在我们的研究中,在 25 个变量中,有 6 个被确定为 CAD 严重程度的显著预测因子。这些因素包括年龄(OR=1.053,<.001)、高密度脂蛋白(HDL,OR=0.440,<.001)、高血压(OR=2.050,<.001)、糖尿病(OR=3.435,<.001)、无氧阈(AT,OR=0.837,<.001)和峰值公斤体重摄氧量(VO/kg,OR=0.872,<.001)。该列线图基于这些预测因子,在训练队列中 AUC 值为 0.939,在验证队列中 AUC 值为 0.840,对 CAD 严重程度的诊断准确性较强,也表现出显著的临床实用性。该列线图基于 CPET 参数,可用于预测 CAD 的严重程度,并通过为临床医生提供一种个性化、非侵入性的诊断方法来帮助进行风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b07/10880531/97fa11d29dce/10.1177_10760296241233562-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验