Suppr超能文献

利用多叶SPAD值和机器学习方法提高水稻氮营养指数估算

Enhancing Nitrogen Nutrition Index estimation in rice using multi-leaf SPAD values and machine learning approaches.

作者信息

Wang Yuan, Shi Peihua, Qian Yinfei, Chen Gui, Xie Jiang, Guan Xianjiao, Shi Weiming, Xiang Haitao

机构信息

State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.

Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China.

出版信息

Front Plant Sci. 2024 Dec 10;15:1492528. doi: 10.3389/fpls.2024.1492528. eCollection 2024.

Abstract

Accurate nitrogen diagnosis is essential for optimizing rice yield and sustainability. This study investigates the potential of using multi-leaf SPAD measurements combined with machine learning models to improve nitrogen nutrition diagnostics in rice. Conducted across five locations with 15 rice cultivars, SPAD values from the first to fifth fully expanded leaves were collected at key growth stages. The study demonstrates that integrating multi-leaf SPAD data with advanced machine learning models, particularly Random Forest and Extreme Gradient Boosting, significantly improves the accuracy of Leaf Nitrogen Concentration (LNC) and Nitrogen Nutrition Index (NNI) estimation. The second fully expanded Leaf From the Top (2LFT) emerged as the most critical variable for predicting LNC, while the 3LFT was pivotal for NNI estimation. The inclusion of statistical metrics, such as maximum and median SPAD values, further enhanced model performance, underscoring the importance of considering both original SPAD measurements and derived indices. This approach provides a more precise method for nitrogen assessment, facilitating improved nitrogen use efficiency and contributing to sustainable agricultural practices through targeted and effective nitrogen management strategies in rice cultivation.

摘要

准确的氮素诊断对于优化水稻产量和可持续性至关重要。本研究探讨了结合多叶SPAD测量与机器学习模型来改善水稻氮素营养诊断的潜力。在五个地点对15个水稻品种进行了研究,在关键生长阶段收集了从第一片到第五片完全展开叶的SPAD值。研究表明,将多叶SPAD数据与先进的机器学习模型(特别是随机森林和极端梯度提升)相结合,可显著提高叶片氮浓度(LNC)和氮营养指数(NNI)估计的准确性。从顶部数第二片完全展开叶(2LFT)成为预测LNC的最关键变量,而3LFT对NNI估计至关重要。纳入统计指标,如最大和中位数SPAD值,进一步提高了模型性能,突出了考虑原始SPAD测量值和派生指数的重要性。这种方法为氮素评估提供了一种更精确的方法,通过在水稻种植中采用有针对性和有效的氮管理策略,促进提高氮利用效率并有助于可持续农业实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c749/11666358/0ac3a787f262/fpls-15-1492528-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验