Berger Katja, Verrelst Jochem, Féret Jean-Baptiste, Wang Zhihui, Wocher Matthias, Strathmann Markus, Danner Martin, Mauser Wolfram, Hank Tobias
Department of Geography, Ludwig-Maximilians-Universitaet München, Luisenstr 37, 80333 Munich, Germany.
Image Processing Laboratory (IPL), Parc Científic, Universitat de València, Paterna, València 46980, Spain.
Remote Sens Environ. 2020 Jun;242:111758. doi: 10.1016/j.rse.2020.111758.
Nitrogen (N) is considered as one of the most important plant macronutrients and proper management of N therefore is a pre-requisite for modern agriculture. Continuous satellite-based monitoring of this key plant trait would help to understand individual crop N use efficiency and thus would enable site-specific N management. Since hyperspectral imaging sensors could provide detailed measurements of spectral signatures corresponding to the optical activity of chemical constituents, they have a theoretical advantage over multi-spectral sensing for the detection of crop N. The current study aims to provide a state-of-the-art overview of crop N retrieval methods from hyperspectral data in the agricultural sector and in the context of future satellite imaging spectroscopy missions. Over 400 studies were reviewed for this purpose, identifying those estimating mass-based N (N concentration, N%) and area-based N (N content, N) using hyperspectral remote sensing data. Retrieval methods of the 125 studies selected in this review can be grouped into: (1) parametric regression methods, (2) linear nonparametric regression methods or chemometrics, (3) nonlinear nonparametric regression methods or machine learning regression algorithms, (4) physically-based or radiative transfer models (RTM), (5) use of alternative data sources (sun-induced fluorescence, SIF) and (6) hybrid or combined techniques. Whereas in the last decades methods for estimation of N and N% from hyperspectral data have been mainly based on simple parametric regression algorithms, such as narrowband vegetation indices, there is an increasing trend of using machine learning, RTM and hybrid techniques. Within plants, N is invested in proteins and chlorophylls stored in the leaf cells, with the proteins being the major nitrogen-containing biochemical constituent. However, in most studies, the relationship between N and chlorophyll content was used to estimate crop N, focusing on the visible-near infrared (VNIR) spectral domains, and thus neglecting protein-related N and reallocation of nitrogen to non-photosynthetic compartments. Therefore, we recommend exploiting the estimation of nitrogen via the proxy of proteins using hyperspectral data and in particular the short-wave infrared (SWIR) spectral domain. We further strongly encourage a standardization of nitrogen terminology, distinguishing between N% and N. Moreover, the exploitation of physically-based approaches is highly recommended combined with machine learning regression algorithms, which represents an interesting perspective for future research in view of new spaceborne imaging spectroscopy sensors.
氮(N)被视为最重要的植物大量营养素之一,因此对氮进行合理管理是现代农业的一个先决条件。基于卫星对这一关键植物特性进行持续监测,将有助于了解单季作物的氮利用效率,从而实现精准的氮管理。由于高光谱成像传感器能够提供与化学成分光学活性相对应的光谱特征的详细测量数据,在检测作物氮含量方面,与多光谱传感相比,它们具有理论上的优势。当前的研究旨在全面概述农业领域中利用高光谱数据进行作物氮含量反演的方法,以及在未来卫星成像光谱任务背景下的相关情况。为此,对400多项研究进行了综述,确定了那些利用高光谱遥感数据估算基于质量的氮(氮浓度,N%)和基于面积的氮(氮含量,N)的研究。本综述中挑选出的125项研究的反演方法可分为:(1)参数回归方法,(2)线性非参数回归方法或化学计量学方法,(3)非线性非参数回归方法或机器学习回归算法,(4)基于物理的或辐射传输模型(RTM),(5)使用替代数据源(太阳诱导荧光,SIF),以及(6)混合或组合技术。在过去几十年中,利用高光谱数据估算氮和N%的方法主要基于简单的参数回归算法,如窄带植被指数,但目前使用机器学习、RTM和混合技术的趋势正在增加。在植物体内,氮被用于合成储存在叶细胞中的蛋白质和叶绿素,其中蛋白质是主要的含氮生化成分。然而,在大多数研究中,利用氮与叶绿素含量之间的关系来估算作物氮含量,主要集中在可见光-近红外(VNIR)光谱域,从而忽略了与蛋白质相关的氮以及氮向非光合区室的重新分配。因此,我们建议利用高光谱数据,特别是短波红外(SWIR)光谱域,通过蛋白质代理来估算氮含量。我们还强烈鼓励对氮术语进行标准化,区分N%和N。此外,强烈建议将基于物理的方法与机器学习回归算法结合使用,鉴于新型星载成像光谱传感器,这代表了未来研究的一个有趣方向。