Suppr超能文献

单轴拉伸在白细胞介素-1β和转化生长因子-β介导的人原代韧带细胞炎症反应中的调节作用。

The modulating role of uniaxial straining in the IL-1β and TGF-β mediated inflammatory response of human primary ligamentocytes.

作者信息

Heidenberger Johannes, Hangel Raphael, Reihs Eva I, Strauss Jonathan, Liskova Petra, Alphonsus Jürgen, Brunner Cornelia, Döring Kevin, Gerner Iris, Jenner Florien, Windhager Reinhard, Toegel Stefan, Rothbauer Mario

机构信息

Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria.

Institute of Applied Synthetic Chemistry, Faculty of Technical Chemistry, Technische Universitaet Wien, Vienna, Austria.

出版信息

Front Bioeng Biotechnol. 2024 Dec 10;12:1469238. doi: 10.3389/fbioe.2024.1469238. eCollection 2024.

Abstract

Biomechanical (over-)stimulation, in addition to inflammatory and fibrotic stimuli, severely impacts the biology, contributing to the overall chronic nature of desmopathy. A major challenge has been the lack of representative two-dimensional (2D) models mimicking inflammatory processes in the presence of dynamic mechanical strain, both being crucial for ligament homeostasis. Physiological levels of strain exert anti-inflammatory effects, while excessive strain can facilitate inflammatory mechanisms. Adhering to the 3Rs (Replacement, Reduction and Refinement) principles of animal research, this study aims to investigate the role of a dynamic biomechanical environment on inflammatory mechanisms by combining a Flexcell culture system with primary human ligamentocytes for the study of ligament pathology. Primary ligamentocytes from OA patients were cultured under animal-free conditions with human platelet lysate, and exposed to either IL-1β or TGF-β3 to simulate different inflammatory microenvironments. Cells were subjected to different magnitudes of mechanical strain. Results showed that cells aligned along the force axis under strain. This study highlights the critical role of the mechanical microenvironment in modulating inflammatory and fibrotic cellular responses in ligamentocyte pathology, providing valuable insights into the complex interplay between biomechanical stimuli and cytokine signaling. These findings not only advance our understanding of ligament biology but also can pave the way for the development of more targeted therapeutic strategies for ligament injuries and diseases, potentially improving patient outcomes in orthopedic medicine.

摘要

除了炎症和纤维化刺激外,生物力学(过度)刺激会严重影响生物学特性,导致韧带病的整体慢性化。一个主要挑战是缺乏能够在动态机械应变情况下模拟炎症过程的代表性二维(2D)模型,而这两者对于韧带稳态都至关重要。生理水平的应变具有抗炎作用,而过度应变则会促进炎症机制。本研究遵循动物研究的3R(替代、减少和优化)原则,旨在通过将Flexcell培养系统与原代人韧带细胞相结合来研究动态生物力学环境对炎症机制的作用,以探讨韧带病理学。来自骨关节炎(OA)患者的原代韧带细胞在无动物条件下用人血小板裂解物培养,并暴露于白细胞介素-1β(IL-1β)或转化生长因子-β3(TGF-β3)以模拟不同的炎症微环境。细胞受到不同大小的机械应变。结果表明,细胞在应变下沿力轴排列。本研究强调了机械微环境在调节韧带细胞病理学中炎症和纤维化细胞反应方面的关键作用,为生物力学刺激与细胞因子信号之间的复杂相互作用提供了有价值的见解。这些发现不仅增进了我们对韧带生物学的理解,还可为开发更具针对性的韧带损伤和疾病治疗策略铺平道路,有望改善骨科医学中的患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccd4/11666359/7d6f83930104/fbioe-12-1469238-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验