Hu Fo, He Kailun, Qian Mengyuan, Liu Xiaofeng, Qiao Zukang, Zhang Lekai, Xiong Junlong
College of Information Engineering, Zhejiang University of Technology, Hangzhou, China.
Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
Front Neurosci. 2024 Dec 10;18:1519970. doi: 10.3389/fnins.2024.1519970. eCollection 2024.
Emotion recognition using electroencephalography (EEG) is a key aspect of brain-computer interface research. Achieving precision requires effectively extracting and integrating both spatial and temporal features. However, many studies focus on a single dimension, neglecting the interplay and complementarity of multi-feature information, and the importance of fully integrating spatial and temporal dynamics to enhance performance.
We propose the Spatiotemporal Adaptive Fusion Network (STAFNet), a novel framework combining adaptive graph convolution and temporal transformers to enhance the accuracy and robustness of EEG-based emotion recognition. The model includes an adaptive graph convolutional module to capture brain connectivity patterns through spatial dynamic evolution and a multi-structured transformer fusion module to integrate latent correlations between spatial and temporal features for emotion classification.
Extensive experiments were conducted on the SEED and SEED-IV datasets to evaluate the performance of STAFNet. The model achieved accuracies of 97.89% and 93.64%, respectively, outperforming state-of-the-art methods. Interpretability analyses, including confusion matrices and t-SNE visualizations, were employed to examine the influence of different emotions on the model's recognition performance. Furthermore, an investigation of varying GCN layer depths demonstrated that STAFNet effectively mitigates the over-smoothing issue in deeper GCN architectures.
In summary, the findings validate the effectiveness of STAFNet in EEG-based emotion recognition. The results emphasize the critical role of spatiotemporal feature extraction and introduce an innovative framework for feature fusion, advancing the state of the art in emotion recognition.
利用脑电图(EEG)进行情感识别是脑机接口研究的一个关键方面。要实现高精度,需要有效地提取和整合空间和时间特征。然而,许多研究只关注单一维度,忽视了多特征信息的相互作用和互补性,以及充分整合空间和时间动态以提高性能的重要性。
我们提出了时空自适应融合网络(STAFNet),这是一个结合自适应图卷积和时间变换器的新颖框架,以提高基于EEG的情感识别的准确性和鲁棒性。该模型包括一个自适应图卷积模块,通过空间动态演化来捕捉大脑连接模式,以及一个多结构变换器融合模块,用于整合空间和时间特征之间的潜在相关性以进行情感分类。
在SEED和SEED-IV数据集上进行了广泛的实验,以评估STAFNet的性能。该模型分别达到了97.89%和93.64%的准确率,优于现有方法。采用包括混淆矩阵和t-SNE可视化在内的可解释性分析来检验不同情感对模型识别性能的影响。此外,对不同GCN层深度的研究表明,STAFNet有效地缓解了更深层次GCN架构中的过平滑问题。
总之,这些发现验证了STAFNet在基于EEG的情感识别中的有效性。结果强调了时空特征提取的关键作用,并引入了一个创新的特征融合框架,推动了情感识别领域的技术发展。