IEEE Trans Neural Syst Rehabil Eng. 2024;32:3878-3890. doi: 10.1109/TNSRE.2024.3487216. Epub 2024 Oct 31.
Effectively integrating the time-space-frequency information of multi-modal signals from armband sensor, including surface electromyogram (sEMG) and accelerometer data, is critical for accurate gesture recognition. Existing approaches often neglect the abundant spatial relationships inherent in multi-channel sEMG signals obtained via armband sensors and face challenges in harnessing the correlations across multiple feature domains. To address this issue, we propose a novel multi-feature fusion network with spatial partitioning strategy and cross-attention (MFN-SPSCA) to improve the accuracy and robustness of gesture recognition. Specifically, a spatiotemporal graph convolution module with a spatial partitioning strategy is designed to capture potential spatial feature of multi-channel sEMG signals. Additionally, we design a cross-attention fusion module to learn and prioritize the importance and correlation of multi-feature domain. Extensive experiment demonstrate that the MFN-SPSCA method outperforms other state-of-the-art methods on self-collected dataset and the Ninapro DB5 dataset. Our work addresses the challenge of recognizing gestures from the multi-modal data collected by armband sensor, emphasizing the importance of integrating time-space-frequency information. Codes are available at https://github.com/ZJUTofBrainIntelligence/MFN-SPSCA.
有效整合来自臂带传感器的多模态信号的时空频率信息,包括表面肌电图(sEMG)和加速度计数据,对于准确的手势识别至关重要。现有的方法往往忽略了通过臂带传感器获得的多通道 sEMG 信号中固有的丰富空间关系,并面临利用多个特征域之间相关性的挑战。为了解决这个问题,我们提出了一种具有空间分区策略和交叉注意力的新型多特征融合网络(MFN-SPSCA),以提高手势识别的准确性和鲁棒性。具体来说,设计了一个具有空间分区策略的时空图卷积模块,以捕获多通道 sEMG 信号的潜在空间特征。此外,我们设计了一个交叉注意融合模块,以学习和优先考虑多特征域的重要性和相关性。广泛的实验表明,MFN-SPSCA 方法在自收集数据集和 Ninapro DB5 数据集上优于其他最先进的方法。我们的工作解决了从臂带传感器收集的多模态数据中识别手势的挑战,强调了整合时频信息的重要性。代码可在 https://github.com/ZJUTofBrainIntelligence/MFN-SPSCA 上获得。