IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10389-10403. doi: 10.1109/TPAMI.2024.3442811. Epub 2024 Nov 6.
Brain network analysis plays an increasingly important role in studying brain function and the exploring of disease mechanisms. However, existing brain network construction tools have some limitations, including dependency on empirical users, weak consistency in repeated experiments and time-consuming processes. In this work, a diffusion-based brain network pipeline, DGCL is designed for end-to-end construction of brain networks. Initially, the brain region-aware module (BRAM) precisely determines the spatial locations of brain regions by the diffusion process, avoiding subjective parameter selection. Subsequently, DGCL employs graph contrastive learning to optimize brain connections by eliminating individual differences in redundant connections unrelated to diseases, thereby enhancing the consistency of brain networks within the same group. Finally, the node-graph contrastive loss and classification loss jointly constrain the learning process of the model to obtain the reconstructed brain network, which is then used to analyze important brain connections. Validation on two datasets, ADNI and ABIDE, demonstrates that DGCL surpasses traditional methods and other deep learning models in predicting disease development stages. Significantly, the proposed model improves the efficiency and generalization of brain network construction. In summary, the proposed DGCL can be served as a universal brain network construction scheme, which can effectively identify important brain connections through generative paradigms and has the potential to provide disease interpretability support for neuroscience research.
脑网络分析在研究大脑功能和探索疾病机制方面发挥着越来越重要的作用。然而,现有的脑网络构建工具存在一些局限性,包括依赖经验丰富的用户、在重复实验中一致性弱和耗时的过程。在这项工作中,我们设计了一个基于扩散的脑网络管道 DGCL,用于脑网络的端到端构建。首先,脑区感知模块(BRAM)通过扩散过程精确地确定脑区的空间位置,避免了主观参数选择。随后,DGCL 采用图对比学习来优化脑连接,消除与疾病无关的冗余连接中的个体差异,从而提高同一组内脑网络的一致性。最后,节点-图对比损失和分类损失共同约束模型的学习过程,以获得重建的脑网络,然后用于分析重要的脑连接。在 ADNI 和 ABIDE 两个数据集上的验证表明,DGCL 在预测疾病发展阶段方面优于传统方法和其他深度学习模型。值得注意的是,所提出的模型提高了脑网络构建的效率和泛化能力。总之,所提出的 DGCL 可以作为一种通用的脑网络构建方案,通过生成范式有效地识别重要的脑连接,并有可能为神经科学研究提供疾病解释支持。