Suppr超能文献

利用预训练机器学习模型进行1型糖尿病中的胰岛定量分析。

Leveraging pre-trained machine learning models for islet quantification in type 1 diabetes.

作者信息

Kang Sanghoon, Penaloza Aponte Jesus D, Elashkar Omar, Morales Juan Francisco, Waddington Nicholas, Lamb Damon G, Ju Huiwen, Campbell-Thompson Martha, Kim Sarah

机构信息

Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, Intelligent Critical Care Center, College of Pharmacy, University of Florida, Orlando, FL, USA.

Department of Pathology, Immunology, and Laboratory Medicine, Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL, USA.

出版信息

J Pathol Inform. 2024 Nov 8;16:100406. doi: 10.1016/j.jpi.2024.100406. eCollection 2025 Jan.

Abstract

Human islets display a high degree of heterogeneity in terms of size, number, architecture, and endocrine cell-type compositions. An ever-increasing number of immunohistochemistry-stained whole slide images (WSIs) are available through the online pathology database of the Network for Pancreatic Organ donors with Diabetes (nPOD) program at the University of Florida (UF). We aimed to develop an enhanced machine learning-assisted WSI analysis workflow to utilize the nPOD resource for analysis of endocrine cell heterogeneity in the natural history of type 1 diabetes (T1D) in comparison to donors without diabetes. To maximize usability, the user-friendly open-source software QuPath was selected for the main interface. The WSI data were analyzed with two pre-trained machine learning models (i.e., Segment Anything Model (SAM) and QuPath's pixel classifier), using the UF high-performance-computing cluster, HiPerGator. SAM was used to define precise endocrine cell and cell grouping boundaries (with an average quality score of 0.91 per slide), and the artificial neural network-based pixel classifier was applied to segment areas of insulin- or glucagon-stained cytoplasmic regions within each endocrine cell. An additional script was developed to automatically count CD3+ cells inside and within 20 μm of each islet perimeter to quantify the number of islets with inflammation (i.e., CD3+ T-cell infiltration). Proof-of-concept analysis was performed to test the developed workflow in 12 subjects using 24 slides. This open-source machine learning-assisted workflow enables rapid and high throughput determinations of endocrine cells, whether as single cells or within groups, across hundreds of slides. It is expected that the use of this workflow will accelerate our understanding of endocrine cell and islet heterogeneity in the context of T1D endotypes and pathogenesis.

摘要

人类胰岛在大小、数量、结构和内分泌细胞类型组成方面表现出高度的异质性。通过佛罗里达大学(UF)的糖尿病胰腺器官捐赠者网络(nPOD)项目的在线病理数据库,可以获得越来越多的免疫组织化学染色全玻片图像(WSIs)。我们旨在开发一种增强的机器学习辅助WSI分析工作流程,以利用nPOD资源分析1型糖尿病(T1D)自然病程中与非糖尿病捐赠者相比的内分泌细胞异质性。为了最大限度地提高可用性,选择了用户友好的开源软件QuPath作为主要界面。使用UF高性能计算集群HiPerGator,用两个预训练的机器学习模型(即分割一切模型(SAM)和QuPath的像素分类器)对WSI数据进行分析。SAM用于定义精确的内分泌细胞和细胞分组边界(每张玻片的平均质量分数为0.91),基于人工神经网络的像素分类器用于分割每个内分泌细胞内胰岛素或胰高血糖素染色的细胞质区域。开发了一个额外的脚本,以自动计数每个胰岛周长内和20μm范围内的CD3+细胞,以量化有炎症的胰岛数量(即CD3+T细胞浸润)。进行了概念验证分析,使用24张玻片在12名受试者中测试了开发的工作流程。这种开源的机器学习辅助工作流程能够快速、高通量地确定内分泌细胞,无论是单个细胞还是成组的细胞,跨越数百张玻片。预计使用这个工作流程将加速我们对T1D内型和发病机制背景下内分泌细胞和胰岛异质性的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df07/11665367/aa007dbd6a86/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验