Suppr超能文献

使用WSInfer和QuPath进行开放且可重复使用的病理学深度学习。

Open and reusable deep learning for pathology with WSInfer and QuPath.

作者信息

Kaczmarzyk Jakub R, O'Callaghan Alan, Inglis Fiona, Gat Swarad, Kurc Tahsin, Gupta Rajarsi, Bremer Erich, Bankhead Peter, Saltz Joel H

机构信息

Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, USA.

Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK.

出版信息

NPJ Precis Oncol. 2024 Jan 10;8(1):9. doi: 10.1038/s41698-024-00499-9.

Abstract

Digital pathology has seen a proliferation of deep learning models in recent years, but many models are not readily reusable. To address this challenge, we developed WSInfer: an open-source software ecosystem designed to streamline the sharing and reuse of deep learning models for digital pathology. The increased access to trained models can augment research on the diagnostic, prognostic, and predictive capabilities of digital pathology.

摘要

近年来,数字病理学领域深度学习模型大量涌现,但许多模型难以直接复用。为应对这一挑战,我们开发了WSInfer:一个开源软件生态系统,旨在简化数字病理学深度学习模型的共享与复用。对经过训练的模型的更多访问可以加强对数字病理学诊断、预后和预测能力的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff76/10781748/a8d77914501a/41698_2024_499_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验