Suppr超能文献

Spns1 依赖的心内膜溶酶体功能通过 Notch1 信号传导驱动瓣膜形态发生。

Spns1-dependent endocardial lysosomal function drives valve morphogenesis through Notch1-signaling.

作者信息

Chávez Myra N, Arora Prateek, Meer Marco, Marques Ines J, Ernst Alexander, Morales Castro Rodrigo A, Mercader Nadia

机构信息

Department of Developmental Biology and Regeneration, Institute of Anatomy, University of Bern, 3012 Bern, Switzerland.

Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland.

出版信息

iScience. 2024 Nov 19;27(12):111406. doi: 10.1016/j.isci.2024.111406. eCollection 2024 Dec 20.

Abstract

Autophagy-lysosomal degradation is a conserved homeostatic process considered to be crucial for cardiac morphogenesis. However, both its cell specificity and functional role during heart development remain unclear. Here, we introduced zebrafish models to visualize autophagic vesicles and track their temporal and cellular localization in the larval heart. We observed a significant accumulation of autolysosomal and lysosomal vesicles in the atrioventricular and bulboventricular regions and their respective valves. We addressed the role of lysosomal degradation based on the Spinster homolog 1 () mutant (, ). larvae displayed morphological and functional cardiac defects, including abnormal endocardial organization, impaired valve formation and retrograde blood flow. Single-nuclear transcriptome analyses revealed endocardial-specific differences in lysosome-related genes and alterations of signalling. Endocardial-specific overexpression of and rescued features of valve formation and function. Altogether, our results reveal a cell-autonomous role of lysosomal processing during cardiac valve formation affecting signalling.

摘要

自噬-溶酶体降解是一种保守的稳态过程,被认为对心脏形态发生至关重要。然而,其在心脏发育过程中的细胞特异性和功能作用仍不清楚。在这里,我们引入斑马鱼模型来可视化自噬小泡,并追踪它们在幼体心脏中的时间和细胞定位。我们观察到自溶酶体和溶酶体小泡在房室和球室区域及其各自瓣膜中大量积累。我们基于Spinster同源物1()突变体(,)研究了溶酶体降解的作用。幼虫表现出形态和功能上的心脏缺陷,包括心内膜组织异常、瓣膜形成受损和血液逆流。单核转录组分析揭示了溶酶体相关基因在心内膜特异性上的差异以及信号传导的改变。心内膜特异性过表达和挽救了瓣膜形成和功能的特征。总之,我们的结果揭示了溶酶体加工在心脏瓣膜形成过程中影响信号传导的细胞自主作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e2a/11667069/f575872e077c/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验