Suppr超能文献

帕金森病中的连续震颤监测:一种受手表启发的摩擦电传感器方法。

Continuous tremor monitoring in Parkinson's disease: A wristwatch-inspired triboelectric sensor approach.

作者信息

Ukasi Sirinya, Pongampai Satana, Panigrahi Basanta Kumar, Panda Swati, Hajra Sugato, Kim Hoe Joon, Vittayakorn Naratip, Charoonsuk Thitirat

机构信息

Department of Materials Science, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Watthana, Bangkok 10110, Thailand.

Advanced Materials Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

出版信息

iScience. 2024 Nov 26;27(12):111480. doi: 10.1016/j.isci.2024.111480. eCollection 2024 Dec 20.

Abstract

Parkinson's disease (PD) prevalence is projected to reach 12 million by 2040. Wearable sensors offer a promising approach for comfortable, continuous tremor monitoring to optimize treatment strategies. Here, we present a wristwatch-like triboelectric sensor (WW-TES) inspired by automatic watches for unobtrusive PD tremor assessment. The WW-TES utilizes a free-standing design with a surface-modified polytetrafluoroethylene (PTFE) film and a stainless-steel rotor within a biocompatible polylactic acid (PLA) package. Electrode distance is optimized to maximize the output signal. We propose and discuss the WW-TES working mechanism. The final design is validated for activities of daily living (ADLs), with varying signal amplitudes corresponding to tremor severity levels ("normal" to "severe") based on MDS-UPDRS tremor frequency. Wavelet packet transform (WPT) is employed for signal analysis during ADLs. The WW-TES demonstrates the potential for continuous tremor monitoring, offering an accurate screening of severity and comfortable, unobtrusive wearability.

摘要

预计到2040年,帕金森病(PD)的患病率将达到1200万。可穿戴传感器为舒适、持续的震颤监测提供了一种很有前景的方法,以优化治疗策略。在此,我们展示了一种受自动手表启发的类似手表的摩擦电传感器(WW-TES),用于不引人注意的PD震颤评估。WW-TES采用独立式设计,在生物相容性聚乳酸(PLA)封装内有表面改性的聚四氟乙烯(PTFE)薄膜和不锈钢转子。优化电极距离以最大化输出信号。我们提出并讨论了WW-TES的工作机制。最终设计在日常生活活动(ADL)中得到验证,基于MDS-UPDRS震颤频率,不同的信号幅度对应震颤严重程度级别(“正常”到“严重”)。在ADL期间采用小波包变换(WPT)进行信号分析。WW-TES展示了连续震颤监测的潜力,能够准确筛查严重程度,且佩戴舒适、不引人注意。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7686/11667019/c32545e11999/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验