Ayana Gelan, Dese Kokeb, Nemomssa Hundessa Daba, Murad Hamdia, Wakjira Efrem, Demlew Gashaw, Yohannes Dessalew, Abdi Ketema Lemma, Taye Elbetel, Bisrat Filimona, Tadesse Tenager, Kidanne Legesse, Choe Se-Woon, Gidi Netsanet Workneh, Habtamu Bontu, Kong Jude
School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, Jimma, 378, Ethiopia.
Africa-Canada Artificial Intelligence and Data Innovation Consortium (ACADIC), Canada.
Infect Dis Model. 2024 Dec 3;10(1):353-364. doi: 10.1016/j.idm.2024.12.002. eCollection 2025 Mar.
Acute flaccid paralysis (AFP) case surveillance is pivotal for the early detection of potential poliovirus, particularly in endemic countries such as Ethiopia. The community-based surveillance system implemented in Ethiopia has significantly improved AFP surveillance. However, challenges like delayed detection and disorganized communication persist. This work proposes a simple deep learning model for AFP surveillance, leveraging transfer learning on images collected from Ethiopia's community key informants through mobile phones. The transfer learning approach is implemented using a vision transformer model pretrained on the ImageNet dataset. The proposed model outperformed convolutional neural network-based deep learning models and vision transformer models trained from scratch, achieving superior accuracy, F1-score, precision, recall, and area under the receiver operating characteristic curve (AUC). It emerged as the optimal model, demonstrating the highest average AUC of 0.870 ± 0.01. Statistical analysis confirmed the significant superiority of the proposed model over alternative approaches ( < 0.001). By bridging community reporting with health system response, this study offers a scalable solution for enhancing AFP surveillance in low-resource settings. The study is limited in terms of the quality of image data collected, necessitating future work on improving data quality. The establishment of a dedicated platform that facilitates data storage, analysis, and future learning can strengthen data quality. Nonetheless, this work represents a significant step toward leveraging artificial intelligence for community-based AFP surveillance from images, with substantial implications for addressing global health challenges and disease eradication strategies.
急性弛缓性麻痹(AFP)病例监测对于早期发现潜在的脊髓灰质炎病毒至关重要,尤其是在埃塞俄比亚等流行国家。埃塞俄比亚实施的基于社区的监测系统显著改善了AFP监测。然而,检测延迟和沟通混乱等挑战仍然存在。这项工作提出了一种用于AFP监测的简单深度学习模型,利用从埃塞俄比亚社区关键信息提供者通过手机收集的图像进行迁移学习。迁移学习方法是使用在ImageNet数据集上预训练的视觉Transformer模型来实现的。所提出的模型优于基于卷积神经网络的深度学习模型和从头开始训练的视觉Transformer模型,在准确率、F1分数、精确率、召回率和受试者工作特征曲线下面积(AUC)方面表现出色。它成为了最优模型,平均AUC最高达到0.870±0.01。统计分析证实了所提出的模型相对于其他方法具有显著优势(<0.001)。通过将社区报告与卫生系统响应联系起来,本研究为在资源匮乏地区加强AFP监测提供了一种可扩展的解决方案。该研究在收集的图像数据质量方面存在局限性,需要未来致力于提高数据质量。建立一个便于数据存储、分析和未来学习的专用平台可以加强数据质量。尽管如此,这项工作代表了朝着利用人工智能从图像进行基于社区的AFP监测迈出的重要一步,对应对全球卫生挑战和疾病根除战略具有重大意义。