Fujiwara Gaku, Okada Yohei, Suehiro Eiichi, Yatsushige Hiroshi, Hirota Shin, Hasegawa Shu, Karibe Hiroshi, Miyata Akihiro, Kawakita Kenya, Haji Kohei, Aihara Hideo, Yokobori Shoji, Inaji Motoki, Maeda Takeshi, Onuki Takahiro, Oshio Kotaro, Komoribayashi Nobukazu, Suzuki Michiyasu, Shiomi Naoto
Department of Neurosurgery, Saiseikai Shiga Hospital, Imperial Gift Foundation Inc.
Department of Preventive Services, School of Public Health, Kyoto University.
Neurol Med Chir (Tokyo). 2025 Feb 15;65(2):61-70. doi: 10.2176/jns-nmc.2024-0066. Epub 2024 Dec 25.
This study aimed to investigate the patterns of anticoagulation therapy and coagulation parameters and to develop a prediction model to predict the type of anticoagulation therapy in geriatric patients with traumatic brain injury. A retrospective analysis was performed using the nationwide neurotrauma database of Japan. Elderly patients (≥65 years) with traumatic brain injury. Patients were divided into 3 groups based on their daily anticoagulant medication (none, direct oral anticoagulant [DOAC], and vitamin K antagonist [VKA]), and coagulation parameters were compared in each group. We then developed a machine-learning model to predict the anticoagulant using coagulation parameters and visualized the pattern using a heat map. A total of 495 patients were enrolled and divided into 3 groups: none (n = 439), DOACs (n = 37), and VKA (n = 19). Comparing none to DOAC and DOAC to VKA for prothrombin time-international normalized ratio (PT-INR), the mean difference and 95% confidence intervals (CIs) were 0.38 (95% CI: 0.59-0.17) and 1.56 (95% CI: 1.21-1.90), and for activated partial thromboplastin time (APTT), the mean difference between none to DOAC and DOAC to VKA was 3.46 (95% CI: 0.98-5.94) and 95% CI was 7.39 (95% CI: 3.29-11.48). A prediction model for the type of anticoagulant used by PT-INR and APTT was developed using machine-learning methods, and a heat map visually revealed their relationship with acceptable predictive ability. This study revealed the characteristic patterns of coagulation parameters in anticoagulants and a pilot model to predict anticoagulant use.
本研究旨在调查抗凝治疗模式和凝血参数,并开发一个预测模型,以预测老年创伤性脑损伤患者的抗凝治疗类型。使用日本全国性神经创伤数据库进行了回顾性分析。纳入老年(≥65岁)创伤性脑损伤患者。根据每日抗凝药物使用情况(无、直接口服抗凝剂[DOAC]和维生素K拮抗剂[VKA])将患者分为3组,并比较每组的凝血参数。然后,我们开发了一种机器学习模型,使用凝血参数预测抗凝剂,并使用热图直观显示其模式。共纳入495例患者,分为3组:无(n = 439)、DOAC(n = 37)和VKA(n = 19)。比较无用药组与DOAC组以及DOAC组与VKA组的凝血酶原时间-国际标准化比值(PT-INR),平均差异和95%置信区间(CI)分别为0.38(95%CI:0.59 - 0.17)和1.56(95%CI:1.21 - 1.90);对于活化部分凝血活酶时间(APTT),无用药组与DOAC组以及DOAC组与VKA组之间的平均差异分别为3.46(95%CI:0.98 - 5.94)和95%CI为7.39(95%CI:3.29 - 11.48)。使用机器学习方法开发了一个基于PT-INR和APTT的抗凝剂类型预测模型,热图直观地揭示了它们之间具有可接受预测能力的关系。本研究揭示了抗凝剂中凝血参数的特征模式以及一个预测抗凝剂使用的初步模型。