Suppr超能文献

在俄罗斯人群中利用低深度全基因组测序进行多基因风险评分与COVID-19严重程度的病例对照关联研究。

Case-control association study between polygenic risk score and COVID-19 severity in a Russian population using low-pass genome sequencing.

作者信息

Nostaeva Arina, Shimansky Valentin, Apalko Svetlana, Kuznetsov Ivan, Sushentseva Natalya, Popov Oleg, Asinovskaya Anna, Mosenko Sergei, Karssen Lennart, Sarana Andrey, Aulchenko Yurii, Shcherbak Sergey

机构信息

City Hospital No. 40 of Kurortny District, St. Petersburg State Budgetary Healthcare Institution, Sestroretsk, Russia.

St. Petersburg State University, St. Petersburg, Russia.

出版信息

Epidemiol Infect. 2024 Dec 26;153:e13. doi: 10.1017/S0950268824001778.

Abstract

The course of COVID-19 is highly variable, with genetics playing a significant role. Through large-scale genetic association studies, a link between single nucleotide polymorphisms and disease susceptibility and severity was established. However, individual single nucleotide polymorphisms identified thus far have shown modest effects, indicating a polygenic nature of this trait, and individually have limited predictive performance. To address this limitation, we investigated the performance of a polygenic risk score model in the context of COVID-19 severity in a Russian population. A genome-wide polygenic risk score model including information from over a million common single nucleotide polymorphisms was developed using summary statistics from the COVID-19 Host Genetics Initiative consortium. Low-coverage sequencing (5x) was performed for ~1000 participants, and polygenic risk score values were calculated for each individual. A multivariate logistic regression model was used to analyse the association between polygenic risk score and COVID-19 outcomes. We found that individuals in the top 10% of the polygenic risk score distribution had a markedly elevated risk of severe COVID-19, with adjusted odds ratio of 2.9 (95% confidence interval: 1.8-4.6, -value = 4e-06), and more than four times higher risk of mortality from COVID-19 (adjusted odds ratio = 4.3, -value = 2e-05). This study highlights the potential of polygenic risk score as a valuable tool for identifying individuals at increased risk of severe COVID-19 based on their genetic profile.

摘要

新冠病毒病的病程高度可变,遗传学在其中发挥着重要作用。通过大规模基因关联研究,确定了单核苷酸多态性与疾病易感性及严重程度之间的联系。然而,迄今为止所识别出的单个单核苷酸多态性显示出的效应较小,表明该性状具有多基因性质,且单个多态性的预测性能有限。为解决这一局限性,我们在俄罗斯人群中研究了多基因风险评分模型在新冠病毒病严重程度方面的表现。利用新冠病毒病宿主遗传学倡议联盟的汇总统计数据,开发了一个包含来自超过100万个常见单核苷酸多态性信息的全基因组多基因风险评分模型。对约1000名参与者进行了低覆盖度测序(5倍),并为每个个体计算多基因风险评分值。使用多变量逻辑回归模型分析多基因风险评分与新冠病毒病结局之间的关联。我们发现,多基因风险评分分布前10%的个体患重症新冠病毒病的风险显著升高,调整后的优势比为2.9(95%置信区间:1.8 - 4.6,P值 = 4×10⁻⁶),死于新冠病毒病的风险高出四倍多(调整后的优势比 = 4.3,P值 = 2×10⁻⁵)。这项研究突出了多基因风险评分作为一种基于个体基因特征识别重症新冠病毒病风险增加个体的有价值工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b749/11748017/6f7b8bae4f4d/S0950268824001778_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验