Suppr超能文献

用于神经形态计算的固态氧化物离子突触晶体管。

Solid-State Oxide-Ion Synaptic Transistor for Neuromorphic Computing.

作者信息

Langner Philipp, Chiabrera Francesco, Alayo Nerea, Nizet Paul, Morrone Luigi, Bozal-Ginesta Carlota, Morata Alex, Tarancón Albert

机构信息

Catalonia Institute for Energy Research (IREC), Jardins de les Dones de Negre 1, 2, Sant Adriá de Besós, Barcelona, 08930, Spain.

Institut de Ciència de Materials de Barcelona (CSIC-ICMAB), Campus UAB, Bellaterra, Barcelona, 08193, Spain.

出版信息

Adv Mater. 2025 Feb;37(7):e2415743. doi: 10.1002/adma.202415743. Epub 2024 Dec 25.

Abstract

Neuromorphic hardware facilitates rapid and energy-efficient training and operation of neural network models for artificial intelligence. However, existing analog in-memory computing devices, like memristors, continue to face significant challenges that impede their commercialization. These challenges include high variability due to their stochastic nature. Microfabricated electrochemical synapses offer a promising approach by functioning as an analog programmable resistor based on deterministic ion-insertion mechanisms. Here, an all-solid-state oxide-ion synaptic transistor is developed, employing BiVCuO as a superior oxide-ion conductor electrolyte and LaSrFeO as a variable-resistance channel able to efficiently operate at temperatures compatible with conventional electronics. This transistor exhibits essential synaptic behaviors such as long- and short-term potentiation, paired-pulse facilitation, and post-tetanic potentiation, mimicking fundamental properties of biological neural networks. Key criteria for efficient neuromorphic computing are satisfied, including excellent linear and symmetric synaptic plasticity, low energy consumption per programming pulse, and high endurance with minimal cycle-to-cycle variation. Integrated into an artificial neural network (ANN) simulation for handwritten digit recognition, the presented synaptic transistor achieved a 96% accuracy on the Modified National Institute of Standards and Technology (MNIST) dataset, illustrating the effective implementation of the device in ANNs. These findings demonstrate the potential of oxide-ion based synaptic transistors for effective implementation in analog neuromorphic computing based on iontronics.

摘要

神经形态硬件有助于实现用于人工智能的神经网络模型的快速且节能的训练与运行。然而,现有的模拟内存计算设备,如忆阻器,仍面临着阻碍其商业化的重大挑战。这些挑战包括因其随机性质而导致的高变异性。微纳加工的电化学突触通过基于确定性离子插入机制作为模拟可编程电阻器发挥作用,提供了一种很有前景的方法。在此,开发了一种全固态氧化物离子突触晶体管,采用BiVCuO作为优良的氧化物离子导体电解质,并采用LaSrFeO作为可变电阻通道,能够在与传统电子器件兼容的温度下高效运行。该晶体管展现出诸如长时程和短时程增强、双脉冲易化以及强直后增强等基本突触行为,模拟了生物神经网络的基本特性。满足了高效神经形态计算的关键标准,包括出色的线性和对称突触可塑性、每个编程脉冲的低能耗以及具有最小周期间变化的高耐久性。将所展示的突触晶体管集成到手写数字识别的人工神经网络(ANN)模拟中,在修改后的国家标准与技术研究所(MNIST)数据集上实现了96%的准确率,说明了该器件在人工神经网络中的有效应用。这些发现证明了基于氧化物离子的突触晶体管在基于离子电子学的模拟神经形态计算中有效应用的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验