Suppr超能文献

基于机器学习的肺表面活性剂抑制剂分类QSAR模型的评估

Evaluation of Machine Learning Based QSAR Models for the Classification of Lung Surfactant Inhibitors.

作者信息

Liu James Y, Peeples Joshua, Sayes Christie M

机构信息

Department of Environmental Science, Baylor University, Waco, Texas 76798-7266, United States.

Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas 77845, United States.

出版信息

Environ Health (Wash). 2024 Sep 20;2(12):912-917. doi: 10.1021/envhealth.4c00118. eCollection 2024 Dec 20.

Abstract

Inhaled chemicals can cause dysfunction in the lung surfactant, a protein-lipid complex with critical biophysical and biochemical functions. This inhibition has many structure-related and dose-dependent mechanisms, making hazard identification challenging. We developed quantitative structure-activity relationships for predicting lung surfactant inhibition using machine learning. Logistic regression, support vector machines, random forest, gradient-boosted trees, prior-data-fitted networks, and multilayer perceptron were evaluated as methods. Multilayer perceptron had the strongest performance with 96% accuracy and an F1 score of 0.97. Support vector machines and logistic regression also performed well with lower computation costs. This serves as a proof-of-concept for efficient hazard screening in the emerging area of lung surfactant inhibition.

摘要

吸入性化学物质可导致肺表面活性物质功能失调,肺表面活性物质是一种具有关键生物物理和生化功能的蛋白质-脂质复合物。这种抑制作用有许多与结构相关和剂量依赖性的机制,这使得危害识别具有挑战性。我们利用机器学习开发了用于预测肺表面活性物质抑制作用的定量构效关系。评估了逻辑回归、支持向量机、随机森林、梯度提升树、先验数据拟合网络和多层感知器等方法。多层感知器表现最强,准确率达96%,F1分数为0.97。支持向量机和逻辑回归也表现良好,且计算成本较低。这为肺表面活性物质抑制这一新兴领域的高效危害筛查提供了概念验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26de/11667287/c243e600da60/eh4c00118_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验