Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States.
Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States.
Elife. 2021 Jul 1;10:e66175. doi: 10.7554/eLife.66175.
Animals learn certain complex tasks remarkably fast, sometimes after a single experience. What behavioral algorithms support this efficiency? Many contemporary studies based on two-alternative-forced-choice (2AFC) tasks observe only slow or incomplete learning. As an alternative, we study the unconstrained behavior of mice in a complex labyrinth and measure the dynamics of learning and the behaviors that enable it. A mouse in the labyrinth makes ~2000 navigation decisions per hour. The animal explores the maze, quickly discovers the location of a reward, and executes correct 10-bit choices after only 10 reward experiences - a learning rate 1000-fold higher than in 2AFC experiments. Many mice improve discontinuously from one minute to the next, suggesting moments of sudden insight about the structure of the labyrinth. The underlying search algorithm does not require a global memory of places visited and is largely explained by purely local turning rules.
动物学习某些复杂任务的速度非常快,有时只需一次体验。那么,是什么样的行为算法支持这种效率呢?许多基于二选一强制选择(2AFC)任务的当代研究只观察到缓慢或不完全的学习。作为一种替代方法,我们研究了老鼠在复杂迷宫中的不受约束的行为,并测量了学习的动态以及使学习成为可能的行为。老鼠在迷宫中每小时大约做出 2000 次导航决策。动物在迷宫中探索,快速发现奖励的位置,并在仅 10 次奖励体验后执行正确的 10 位选择——学习速度比 2AFC 实验快 1000 倍。许多老鼠在下一分钟到上一分钟之间会突然有明显的进步,这表明它们对迷宫结构有了突然的认识。基础搜索算法不需要对访问过的地方进行全局记忆,并且在很大程度上可以用纯粹的局部转向规则来解释。