Hardy Mike, Kashani Zadeh Hossein, Tzouchas Angelis, Vasefi Fartash, MacKinnon Nicholas, Bearman Gregory, Sokolov Yaroslav, Haughey Simon A, Elliott Christopher T
National Measurement Laboratory: Centre of Excellence in Agriculture and Food Integrity, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K.
SafetySpect Incorporated, Grand Forks, North Dakota 58202, United States.
ACS Food Sci Technol. 2024 Aug 22;4(12):2813-2823. doi: 10.1021/acsfoodscitech.4c00331. eCollection 2024 Dec 20.
Salmon fillet was analyzed via hand-held optical devices: fluorescence (@340 nm) and absorption spectroscopy across the visible and near-infrared (NIR) range (400-1900 nm). Spectroscopic measurements were benchmarked with nucleotide assays and potentiometry in an exploratory set of experiments over 11 days, with changes to spectral profiles noted. A second enlarged spectroscopic data set, over a 17 day period, was then acquired, and fillet freshness was classified ±1 day via four machine learning (ML) algorithms: linear discriminant analysis, Gaussian naïve, weighted -nearest neighbors, and an ensemble bagged tree method. Dual-mode data fusion returned almost perfect accuracies (mean = 99.5 ± 0.51%), while single-mode ML analyses (fluorescence, visible absorbance, and NIR absorbance) returned lower mean accuracies at greater spread (77.1 ± 10.1%). Single-mode fluorescence accuracy was especially poor; however, via principal component analysis, we found that a truncated fluorescence data set of four variables (wavelengths) could predict "fresh" and "spoilt" salmon fillet based on a subtle peak redshift as the fillet aged, albeit marginally short of statistical significance (95% confidence ellipse). Thus, whether by feature selection of one spectral data set, or the combination of multiple data sets through different modes, this study lays the foundation for better determination of fish freshness within the context of rapid spectroscopic analyses.
荧光(@340 nm)以及在可见光和近红外(NIR)范围(400 - 1900 nm)的吸收光谱分析。在为期11天的一组探索性实验中,用核苷酸分析和电位滴定法对光谱测量进行了基准测试,并记录了光谱特征的变化。然后在17天的时间里获取了第二个扩大的光谱数据集,并通过四种机器学习(ML)算法对鱼片的新鲜度进行了±1天的分类:线性判别分析、高斯朴素算法、加权最近邻算法和集成袋装树方法。双模式数据融合的准确率几乎达到完美(平均值 = 99.5 ± 0.51%),而单模式ML分析(荧光、可见光吸光度和近红外吸光度)的平均准确率较低且离散度较大(77.1 ± 10.1%)。单模式荧光分析的准确率尤其低;然而,通过主成分分析,我们发现一个由四个变量(波长)组成的截断荧光数据集可以根据鱼片老化时微妙的峰值红移来预测“新鲜”和“变质”的三文鱼鱼片,尽管略低于统计学显著性(95%置信椭圆)。因此,无论是通过对一个光谱数据集进行特征选择,还是通过不同模式对多个数据集进行组合,本研究为在快速光谱分析的背景下更好地测定鱼类新鲜度奠定了基础。