Else Kroener Fresenius Center for Digital Health, Technical University Dresden, 01307 Dresden, Germany; Department of Medicine III, University Hospital RWTH Aachen, 52074 Aachen, Germany.
Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds LS9 7TF, UK.
Cell Rep Med. 2023 Apr 18;4(4):100980. doi: 10.1016/j.xcrm.2023.100980. Epub 2023 Mar 22.
Deep learning (DL) can predict microsatellite instability (MSI) from routine histopathology slides of colorectal cancer (CRC). However, it is unclear whether DL can also predict other biomarkers with high performance and whether DL predictions generalize to external patient populations. Here, we acquire CRC tissue samples from two large multi-centric studies. We systematically compare six different state-of-the-art DL architectures to predict biomarkers from pathology slides, including MSI and mutations in BRAF, KRAS, NRAS, and PIK3CA. Using a large external validation cohort to provide a realistic evaluation setting, we show that models using self-supervised, attention-based multiple-instance learning consistently outperform previous approaches while offering explainable visualizations of the indicative regions and morphologies. While the prediction of MSI and BRAF mutations reaches a clinical-grade performance, mutation prediction of PIK3CA, KRAS, and NRAS was clinically insufficient.
深度学习(DL)可以从结直肠癌(CRC)的常规组织病理学幻灯片中预测微卫星不稳定性(MSI)。然而,目前尚不清楚 DL 是否也可以高性能地预测其他生物标志物,以及 DL 预测是否可以推广到外部患者群体。在这里,我们从两个大型多中心研究中获取 CRC 组织样本。我们系统地比较了六种不同的最先进的 DL 架构,以从病理幻灯片中预测生物标志物,包括 MSI 和 BRAF、KRAS、NRAS 和 PIK3CA 中的突变。使用一个大型外部验证队列提供现实的评估环境,我们表明,使用基于自监督、注意力的多实例学习的模型始终优于以前的方法,同时提供指示区域和形态的可解释可视化。虽然 MSI 和 BRAF 突变的预测达到了临床级性能,但 PIK3CA、KRAS 和 NRAS 突变的预测在临床上还不够。