Valderrama-Beltrán Sandra Liliana, Cuervo-Rojas Juliana, Rondón Martín, Montealegre-Diaz Juan Sebastián, Vera Juan David, Martinez-Vernaza Samuel, Bonilla Alejandra, Molineros Camilo, Fierro Viviana, Moreno Atilio, Villalobos Leidy, Ariza Beatriz, Álvarez-Moreno Carlos
Faculty of Medicine, Department of Clinical Epidemiology and Biostatistics, PhD Program in Clinical Epidemiology, Pontificia Universidad Javeriana, Bogotá, Colombia.
Faculty of Medicine, Department of Internal Medicine, Division of Infectious Diseases, Pontificia Universidad Javeriana, Hospital Universitario San Ignacio, Infectious Diseases Research Group, Bogotá, Colombia.
PLoS One. 2024 Dec 26;19(12):e0316207. doi: 10.1371/journal.pone.0316207. eCollection 2024.
Despite declining COVID-19 incidence, healthcare workers (HCWs) still face an elevated risk of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. We developed a diagnostic multivariate model to predict positive reverse transcription polymerase chain reaction (RT-PCR) results in HCWs with suspected SARS-CoV-2 infection.
We conducted a cross-sectional study on episodes involving suspected SARS-CoV-2 symptoms or close contact among HCWs in Bogotá, Colombia. Potential predictors were chosen based on clinical relevance, expert knowledge, and literature review. Logistic regression was used, and the best model was selected by evaluating model fit with Akaike Information Criterion (AIC), deviance, and maximum likelihood.
The study included 2498 episodes occurring between March 6, 2020, to February 2, 2022. The selected variables were age, socioeconomic status, occupation, service, symptoms (fever, cough, fatigue/weakness, diarrhea, anosmia or dysgeusia), asthma, history of SARS-CoV-2, vaccination status, and population-level RT-PCR positivity. The model achieved an AUC of 0.79 (95% CI 0.77-0.81), with 93% specificity, 36% sensitivity, and satisfactory calibration.
We present an innovative diagnostic prediction model that as a special feature includes a variable that represents SARS-CoV-2 epidemiological situation. Given its performance, we suggest using the model differently based on the level of viral circulation in the population. In low SARS-CoV-2 circulation periods, the model could serve as a replacement diagnostic test to classify HCWs as infected or not, potentially reducing the need for RT-PCR. Conversely, in high viral circulation periods, the model could be used as a triage test due to its high specificity. If the model predicts a high probability of a positive RT-PCR result, the HCW may be considered infected, and no further testing is performed. If the model indicates a low probability, the HCW should undergo a COVID-19 test. In resource-limited settings, this model can help prioritize testing and reduce expenses.
尽管新冠病毒疾病(COVID-19)发病率呈下降趋势,但医护人员(HCWs)仍面临严重急性呼吸综合征冠状病毒2(SARS-CoV-2)感染的较高风险。我们开发了一种诊断多变量模型,以预测疑似感染SARS-CoV-2的医护人员逆转录聚合酶链反应(RT-PCR)结果呈阳性的情况。
我们对哥伦比亚波哥大医护人员中涉及疑似SARS-CoV-2症状或密切接触的事件进行了横断面研究。根据临床相关性、专家知识和文献综述选择潜在预测因素。使用逻辑回归,并通过用赤池信息准则(AIC)、偏差和最大似然评估模型拟合来选择最佳模型。
该研究纳入了2020年3月6日至2022年2月2日期间发生的2498起事件。所选变量包括年龄、社会经济地位、职业、服务、症状(发热、咳嗽、疲劳/虚弱、腹泻、嗅觉减退或味觉障碍)、哮喘、SARS-CoV-2病史、疫苗接种状况以及人群水平的RT-PCR阳性率。该模型的曲线下面积(AUC)为0.79(95%置信区间0.77 - 0.81),特异性为93%,敏感性为36%,校准效果良好。
我们提出了一种创新的诊断预测模型,其一个特殊特征是包含一个代表SARS-CoV-2流行病学情况的变量。鉴于其性能,我们建议根据人群中病毒传播水平不同地使用该模型。在SARS-CoV-2低传播期,该模型可作为一种替代诊断测试,将医护人员分类为感染或未感染,可能减少对RT-PCR的需求。相反,在高病毒传播期,由于其高特异性,该模型可作为一种分诊测试。如果该模型预测RT-PCR结果呈阳性的概率很高,则该医护人员可被视为感染,无需进一步检测。如果该模型表明概率很低,则该医护人员应接受COVID-19检测。在资源有限的环境中,该模型有助于确定检测优先级并降低费用。