Rasys Ashley M, Pau Shana H, Irwin Katherine E, Luo Sherry, Kim Hannah Q, Wahle M Austin, Menke Douglas B, Lauderdale James D
Department of Cellular Biology, The University of Georgia, Athens, Georgia, USA.
Department of Genetics, The University of Georgia, Athens, Georgia, USA.
J Anat. 2025 Jun;246(6):1019-1033. doi: 10.1111/joa.14193. Epub 2024 Dec 26.
The fovea, a pit in the retina, is crucial for high-acuity vision in humans and is found in the eyes of other vertebrates, including certain primates, birds, lizards, and fish. Despite its importance for vision, our understanding of the mechanisms involved in fovea development remains limited. Widely used ocular research models lack a foveated retina, and studies on fovea development are mostly limited to histological and molecular studies in primates. As a first step toward elucidating fovea development in nonprimate vertebrates, we present a detailed histological atlas of retina and fovea development in the bifoveated Anolis sagrei lizard, a novel reptile model for fovea research. We test the hypothesis that retinal remodeling, leading to fovea formation and photoreceptor cell packing, is related to asymmetric changes in eye shape. Our findings show that anole retina development follows the typical spatiotemporal patterning observed in most vertebrates: retinal neurogenesis starts in the central retina, progresses through the temporal retina, and finishes in the nasal retina. However, the areas destined to become the central or temporal fovea differentiate earlier than the rest of the retina. We observe dynamic changes in retinal thickness during ocular elongation and retraction-thinning during elongation and thickening during retraction. Additionally, a transient localized thickening of the ganglion cell layer occurs in the temporal fovea region just before pit formation. Our data indicate that anole retina development is similar to that of humans, including the onset and progression of retinal neurogenesis, followed by changes in ocular shape and retinal remodeling leading to pit formation. We propose that anoles are an excellent model system for fovea development research.
中央凹是视网膜上的一个凹陷,对人类的高敏锐度视觉至关重要,在包括某些灵长类动物、鸟类、蜥蜴和鱼类在内的其他脊椎动物的眼睛中也能找到。尽管它对视觉很重要,但我们对中央凹发育所涉及的机制的理解仍然有限。广泛使用的眼部研究模型缺乏具有中央凹的视网膜,并且对中央凹发育的研究大多局限于灵长类动物的组织学和分子研究。作为阐明非灵长类脊椎动物中央凹发育的第一步,我们展示了双中央凹安乐蜥视网膜和中央凹发育的详细组织学图谱,这是一种用于中央凹研究的新型爬行动物模型。我们测试了这样一个假设,即导致中央凹形成和光感受器细胞堆积的视网膜重塑与眼睛形状的不对称变化有关。我们的研究结果表明,安乐蜥视网膜发育遵循大多数脊椎动物中观察到的典型时空模式:视网膜神经发生始于视网膜中央,通过颞侧视网膜进展,并在鼻侧视网膜完成。然而,注定要成为中央或颞侧中央凹的区域比视网膜的其他部分分化得更早。我们观察到在眼球伸长和回缩过程中视网膜厚度的动态变化——伸长时变薄,回缩时变厚。此外,在凹陷形成前,颞侧中央凹区域的神经节细胞层会出现短暂的局部增厚。我们的数据表明,安乐蜥视网膜发育与人类相似,包括视网膜神经发生的起始和进展,随后是眼睛形状的变化和导致凹陷形成的视网膜重塑。我们认为安乐蜥是中央凹发育研究的优秀模型系统。