Bairley Kathryn, Zhang Junxiang, Dayton Damara G, Brea Courtney, Therdkatanyuphong Pattarawadee, Barlow Stephen, Hu Guoxiang, Toney Michael F, Marder Seth R, Perini Carlo A R, Correa-Baena Juan-Pablo
School of Materials Science and Engineering, Georgia Institute of Technology, North Ave NW, Atlanta, Georgia 30332, United States.
Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado 80309, United States.
ACS Appl Mater Interfaces. 2025 Jan 8;17(1):1209-1220. doi: 10.1021/acsami.4c17382. Epub 2024 Dec 27.
Bulky organic cations are used in perovskite solar cells as a protective barrier against moisture, oxygen, and ion diffusion. However, bulky cations can introduce thermal instabilities by reacting with the near-surface of the 3D perovskite forming low-dimensional phases, including 2D perovskites, and by diffusing away from the surface into the film. This study explores the thermal stability of CsFAPbI 3D perovskite surfaces treated with two anthracene salts─anthracen-1-ylmethylammonium iodide (AMAI) and 2-(anthracen-1-yl)ethylammonium iodide (AEAI)─and compares them with the widely used phenethylammonium iodide (PEAI). The steric hindrance of AMAI limits the interaction of its NH head with the perovskite lattice, relative to what is seen with AEAI and PEAI. As a result, AMAI requires more thermal energy to convert the 3D perovskite surface to a 2D perovskite. Annealing of perovskite surfaces treated with the iodide salts results in decreased power conversion efficiencies (PCEs) for PEAI and AEAI, while a PCE enhancement is observed for AMAI. Importantly, AMAI-treated devices show enhanced stability upon annealing of the film and a 100% yield of working pixels after a high-temperature stability test at 85 °C, representing the most reliable device configuration among all those studied in this work. These results reveal the potential of AMAI as a scalable surface treatment.
大分子有机阳离子被用于钙钛矿太阳能电池中,作为防潮、防氧和离子扩散的保护屏障。然而,大分子阳离子会与三维钙钛矿的近表面反应形成低维相(包括二维钙钛矿),并从表面扩散到薄膜中,从而引入热不稳定性。本研究探讨了用两种蒽盐——蒽-1-基甲基碘化铵(AMAI)和2-(蒽-1-基)乙基碘化铵(AEAI)处理的CsFAPbI三维钙钛矿表面的热稳定性,并将其与广泛使用的苯乙碘化铵(PEAI)进行比较。相对于AEAI和PEAI,AMAI的空间位阻限制了其NH头部与钙钛矿晶格的相互作用。因此,AMAI需要更多的热能才能将三维钙钛矿表面转化为二维钙钛矿。用碘化物盐处理的钙钛矿表面进行退火处理后,PEAI和AEAI的功率转换效率(PCE)降低,而AMAI则观察到PCE提高。重要的是,经AMAI处理的器件在薄膜退火后显示出增强的稳定性,并且在85°C的高温稳定性测试后工作像素的良品率为100%,这是本研究中所有研究的器件配置中最可靠的。这些结果揭示了AMAI作为一种可扩展表面处理方法的潜力。