Wu Huan, Hu Yongjie
Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America.
Int J Heat Mass Transf. 2024 Mar;220. doi: 10.1016/j.ijheatmasstransfer.2023.124988. Epub 2023 Dec 3.
In classical theory, heat conduction in solids is regarded as a diffusion process driven by a temperature gradient, whereas fluid transport is understood as convection process involving the bulk motion of the liquid or gas. In the framework of theory, which is directly built upon quantum mechanics without relying on measured parameters or phenomenological models, we observed and investigated the fluid-like convective transport of energy carriers in solid heat conduction. Thermal transport, carried by phonons, is simulated in graphite by solving the Boltzmann transport equation using a Monte Carlo algorithm. To capture convective transport, with phonon distributions deviating significantly from equilibrium Bose-Einstein distribution, we determined phonon interactions using approaches that go beyond relaxation time approximations. The presence of strong momentum-conserved Normal scatterings in graphite introduces a regime for hydrodynamic phonon transport. Fluid-like features, such as vortex and jet flow, are visualized and compared with classical theories on heat diffusion and fluid convection. Our study on phonon convection enhances fundamental understandings of heat conduction in solids from both atomic scale and quantum aspects, innovating thermal designs for future microelectronic devices and other thermal management applications. This potentially offers solutions for heat dissipation challenges in the post-Moore era.
在经典理论中,固体中的热传导被视为由温度梯度驱动的扩散过程,而流体传输则被理解为涉及液体或气体整体运动的对流过程。在直接基于量子力学构建、不依赖测量参数或唯象模型的理论框架内,我们观察并研究了固体热传导中能量载体的类流体对流传输。通过使用蒙特卡罗算法求解玻尔兹曼输运方程,在石墨中模拟了由声子携带的热传输。为了捕捉对流传输,由于声子分布显著偏离平衡玻色 - 爱因斯坦分布,我们使用超越弛豫时间近似的方法确定声子相互作用。石墨中强动量守恒的正常散射的存在引入了一种流体动力学声子传输机制。类流体特征,如涡旋和射流,被可视化并与热扩散和流体对流的经典理论进行比较。我们对声子对流的研究从原子尺度和量子方面增强了对固体热传导的基本理解,为未来微电子器件和其他热管理应用创新了热设计。这可能为后摩尔时代的散热挑战提供解决方案。