Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
Université de Lyon, INSA Lyon, CNRS, CETHIL, UMR5008, Villeurbanne, France.
Nature. 2024 Oct;634(8036):1086-1090. doi: 10.1038/s41586-024-08052-1. Epub 2024 Oct 16.
The Tesla valve benefits the rectification of fluid flow in microfluidic systems and inspires researchers to design modern solid-state electronic and thermal rectifiers referring to fluid-rectification mechanisms in a liquid-state context. In contrast to the rectification of fluids in microfluidic channels, the rectification of thermal phonons in micro-solid channels presents increased complexity owing to the lack of momentum-conserving collisions between phonons and the infrequent occurrence of liquid-like phonon flows. Recently, investigations and revelations of phonon hydrodynamics in graphitic materials have opened up new avenues for achieving thermal rectification. Here we demonstrate a phonon hydrodynamics approach to realize the rectification of heat conduction in isotopically enriched graphite crystals. We design a micrometre-scale Tesla valve within 90-nm-thick graphite and experimentally observe a discernible 15.2% difference in thermal conductivity between opposite directions at 45 K. This work marks an important step towards using collective phonon behaviour for thermal management in microscale and nanoscale electronic devices, paving the way for thermal rectification in solids.
特斯拉阀有益于微流系统中流体流动的整流,并启发研究人员参考液态环境中的流体制动机制来设计现代固态电子和热整流器。与微流道中流体的整流不同,由于微固流道中声子缺乏动量守恒碰撞且类似液体的声子流很少发生,因此微固流道中热声子的整流呈现出更大的复杂性。最近,对石墨类材料中声子流体动力学的研究和揭示为实现热整流开辟了新途径。在这里,我们展示了一种声子流体动力学方法,以实现同位素富集石墨晶体中热传导的整流。我们在 90nm 厚的石墨中设计了一个微尺度特斯拉阀,并在 45K 时实验观察到相反方向热导率有明显的 15.2%差异。这项工作朝着利用集体声子行为进行微尺度和纳尺度电子设备热管理迈出了重要一步,为固体中的热整流铺平了道路。