Suppr超能文献

同位素诱导反常振动物理学的非微扰确定

Non-Perturbative Determination of Isotope-induced Anomalous Vibrational Physics.

作者信息

Wu Huan, Qin Zihao, Li Suixuan, Lindsay Lucas, Hu Yongjie

机构信息

School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, California 90095, USA.

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

出版信息

Phys Rev B. 2023 Oct;108(14). doi: 10.1103/physrevb.108.l140302. Epub 2023 Oct 18.

Abstract

In general, vibrational physics has been well described by quantum perturbation theory to provide footprint characteristics for common crystals. However, despite weak phonon anharmonicity, the recently discovered cubic crystals have shown anomalous vibrational dynamics with elusive fundamental origin. Here, we developed a non-perturbative approach, in together with spectroscopy and high-pressure experiments, to successfully determine the exact dynamic evolutions of the vibrational physics for the first time. We found that the local fluctuation and coupling isotopes significantly dictate the vibrational spectra, through the Brillouin zone folding that has been previously ignored in literature. By decomposing vibrational spectra into individual isotope eigenvectors, we observed both positive and negative contributions to Raman intensity from constitutional atoms (B, B, As or P). Importantly, our non-perturbative theory predicts that a novel vibrational resonance appears at high hydrostatic pressure due to broken translational symmetry, which was indeed verified by experimental measurement under a pressure up to 31.5 GPa. Our study develops fundamental understandings for the anomalous lattice physics under the failure of quantum perturbation theory and provides a new approach in exploring novel transport phenomena for materials of extreme properties.

摘要

一般来说,量子微扰理论已很好地描述了振动物理学,以提供常见晶体的足迹特征。然而,尽管声子非简谐性较弱,但最近发现的立方晶体却表现出具有难以捉摸的基本起源的异常振动动力学。在此,我们开发了一种非微扰方法,并结合光谱学和高压实验,首次成功确定了振动物理学的确切动态演化。我们发现,通过文献中先前被忽视的布里渊区折叠,局部涨落和耦合同位素显著决定了振动光谱。通过将振动光谱分解为各个同位素本征向量,我们观察到构成原子(B、B、As或P)对拉曼强度的正负贡献。重要的是,我们的非微扰理论预测,由于平移对称性的破坏,在高静水压力下会出现一种新的振动共振,这确实在高达31.5 GPa的压力下通过实验测量得到了验证。我们的研究对量子微扰理论失效下的异常晶格物理学有了基本认识,并为探索具有极端性质材料的新型输运现象提供了一种新方法。

相似文献

1
Non-Perturbative Determination of Isotope-induced Anomalous Vibrational Physics.
Phys Rev B. 2023 Oct;108(14). doi: 10.1103/physrevb.108.l140302. Epub 2023 Oct 18.
2
Anomalous thermal transport under high pressure in boron arsenide.
Nature. 2022 Dec;612(7940):459-464. doi: 10.1038/s41586-022-05381-x. Epub 2022 Nov 23.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Mode-coupling theory of lattice dynamics for classical and quantum crystals.
J Chem Phys. 2023 Dec 21;159(23). doi: 10.1063/5.0174255.
5
Vibrational properties of RbNd(WO4)2: high pressure Raman study, structural and phonon calculations.
J Phys Condens Matter. 2011 Oct 12;23(40):405901. doi: 10.1088/0953-8984/23/40/405901. Epub 2011 Sep 21.
6
Structural, elastic and vibrational properties of nanocrystalline lutetium gallium garnet under high pressure.
Phys Chem Chem Phys. 2015 Apr 14;17(14):9454-64. doi: 10.1039/c4cp05903d. Epub 2015 Mar 13.
7
An atlas of room-temperature stability and vibrational anharmonicity of cubic perovskites.
Mater Horiz. 2022 Jul 4;9(7):1896-1910. doi: 10.1039/d2mh00272h.
9
Electronic State-Resolved Electron-Phonon Coupling in an Organic Charge Transfer Material from Broadband Quantum Beat Spectroscopy.
J Phys Chem Lett. 2015 Sep 17;6(18):3560-4. doi: 10.1021/acs.jpclett.5b01706. Epub 2015 Aug 28.
10
Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
J Phys Condens Matter. 2008 Feb 13;20(6):060301. doi: 10.1088/0953-8984/20/06/060301. Epub 2008 Jan 24.

引用本文的文献

1
Nonclassical Heat Transfer and Recent Progress.
ASME J Heat Mass Transf. 2025 Mar;147(3). doi: 10.1115/1.4066973. Epub 2024 Dec 16.
2
Advancing Thermal Management Technology for Power Semiconductors through Materials and Interface Engineering.
Acc Mater Res. 2025 Apr 8;6(5):563-576. doi: 10.1021/accountsmr.4c00349. eCollection 2025 May 23.
4
Isotope-Enriched Cubic Boron Arsenide with Ultrahigh Thermal Conductivity.
Adv Sci (Weinh). 2025 Apr 9:e2502544. doi: 10.1002/advs.202502544.
5
investigations on hydrodynamic phonon transport: From diffusion to convection.
Int J Heat Mass Transf. 2024 Mar;220. doi: 10.1016/j.ijheatmasstransfer.2023.124988. Epub 2023 Dec 3.

本文引用的文献

1
Machine Learning for Harnessing Thermal Energy: From Materials Discovery to System Optimization.
ACS Energy Lett. 2022 Oct 14;7(10):3204-3226. doi: 10.1021/acsenergylett.2c01836. Epub 2022 Sep 1.
2
Anomalous thermal transport under high pressure in boron arsenide.
Nature. 2022 Dec;612(7940):459-464. doi: 10.1038/s41586-022-05381-x. Epub 2022 Nov 23.
4
Mediated Interactions and Photon Bound States in an Exciton-Polariton Mixture.
Phys Rev Lett. 2021 Jan 8;126(1):017401. doi: 10.1103/PhysRevLett.126.017401.
5
Quantum ESPRESSO toward the exascale.
J Chem Phys. 2020 Apr 21;152(15):154105. doi: 10.1063/5.0005082.
6
Intrinsic Low Thermal Conductivity and Phonon Renormalization Due to Strong Anharmonicity of Single-Crystal Tin Selenide.
Nano Lett. 2019 Aug 14;19(8):4941-4948. doi: 10.1021/acs.nanolett.9b01056. Epub 2019 Jul 8.
7
The role of electron-electron interactions in two-dimensional Dirac fermions.
Science. 2018 Aug 10;361(6402):570-574. doi: 10.1126/science.aao2934.
8
Experimental observation of high thermal conductivity in boron arsenide.
Science. 2018 Aug 10;361(6402):575-578. doi: 10.1126/science.aat5522. Epub 2018 Jul 5.
9
Unusual high thermal conductivity in boron arsenide bulk crystals.
Science. 2018 Aug 10;361(6402):582-585. doi: 10.1126/science.aat7932. Epub 2018 Jul 5.
10
High thermal conductivity in cubic boron arsenide crystals.
Science. 2018 Aug 10;361(6402):579-581. doi: 10.1126/science.aat8982. Epub 2018 Jul 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验