Suppr超能文献

肿瘤溶解综合征与免疫细胞分析:免疫化疗对可切除Ⅲ期非小细胞肺癌肿瘤微环境的免疫调节作用

TLS and immune cell profiling: immunomodulatory effects of immunochemotherapy on tumor microenvironment in resectable stage III NSCLC.

作者信息

Yang Chaopin, You Jinqi, Wang Yizhi, Chen Si, Tang Yan, Chen Hao, Zhong Haoran, Song Ruyue, Long Hao, Xiang Tong, Zhao Ze-Rui, Xia Jianchuan

机构信息

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.

Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.

出版信息

Front Immunol. 2024 Dec 11;15:1499731. doi: 10.3389/fimmu.2024.1499731. eCollection 2024.

Abstract

BACKGROUND

The use of programmed death-1 (PD-1) inhibitors in the neoadjuvant setting for patients with resectable stage III NSCLC has revolutionized this field in recent years. However, there is still 40%-60% of patients do not benefit from this approach. The complex interactions between immune cell subtypes and tertiary lymphoid structures (TLSs) within the tumor microenvironment (TME) may influence prognosis and the response to immunochemotherapy. This study aims to assess the relationship between immune cells subtypes and TLSs to better understand their impact on immunotherapy response.

METHODS

This study initially compared the tertiary lymphoid structures (TLSs) density among patients who underwent immunochemotherapy, chemotherapy and upfront surgery using 123 tumor samples from stage-matched patients. Multiplex immunohistochemistry (mIHC) was employed to analyze the spatial distribution of PD-L1+CD11c+ cells and PD1+CD8+ T cells within TLSs. Cytometry by time-of-flight (CyTOF) was used to assess immune cell dynamics in paired biopsy and resection specimens from six patients who underwent immunochemotherapy. Key immune cells were validated in newly collected samples using flow cytometry, mIHC, and CAR-T cells model.

RESULTS

Patients who underwent neoadjuvant chemotherapy or immunochemotherapy exhibited increased TLSs compared to those who opted for upfront surgery. The TLS area-to-tumor area ratio distinguished pCR+MPR and NR patients in the immunochemotherapy group. Spatial analysis revealed variations in the distance between PD-L1+CD11c+ cells and PD1+CD8+ T cells within TLSs in the immunochemotherapy group. CyTOF analysis revealed an increase in the frequency of key immune cells (CCR7+CD127+CD69+CD4+ and CD38+CD8+ cells) following combined therapy. Treatment responders exhibited an increase in CCR7+CD4+ T cells, whereas CD38+CD8+ T cells were associated with compromised treatment effectiveness.

CONCLUSIONS

Immunochemotherapy and chemotherapy increase TLSs and granzyme B+ CD8+ T cells in tumors. The TLS area-to-tumor ratio distinguishes responders from non-responders, with PD-L1+ dendritic cells near CD8+PD-1+ T cells linked to efficacy, suggesting that PD-1 inhibitors disrupt harmful interactions. Post-immunochemotherapy, CD8+ T cells increase, but CD38+CD8+ T cells show reduced functionality. These findings highlight the complex immune dynamics and their implications for NSCLC treatment.

摘要

背景

近年来,程序性死亡-1(PD-1)抑制剂在可切除的III期非小细胞肺癌(NSCLC)患者新辅助治疗中的应用彻底改变了这一领域。然而,仍有40%-60%的患者无法从这种治疗方法中获益。肿瘤微环境(TME)中免疫细胞亚型与三级淋巴结构(TLSs)之间复杂的相互作用可能会影响预后和免疫化疗反应。本研究旨在评估免疫细胞亚型与TLSs之间的关系,以更好地了解它们对免疫治疗反应的影响。

方法

本研究最初使用来自分期匹配患者的123个肿瘤样本,比较了接受免疫化疗、化疗和直接手术的患者的三级淋巴结构(TLSs)密度。采用多重免疫组织化学(mIHC)分析TLSs内PD-L1+CD11c+细胞和PD1+CD8+T细胞的空间分布。采用飞行时间流式细胞术(CyTOF)评估6例接受免疫化疗患者的配对活检和切除标本中的免疫细胞动态。使用流式细胞术、mIHC和嵌合抗原受体T细胞(CAR-T)模型在新收集的样本中验证关键免疫细胞。

结果

与选择直接手术的患者相比,接受新辅助化疗或免疫化疗的患者TLSs增加。TLS面积与肿瘤面积之比区分了免疫化疗组中的病理完全缓解(pCR)+主要病理缓解(MPR)和无反应(NR)患者。空间分析显示免疫化疗组中TLSs内PD-L1+CD11c+细胞与PD1+CD8+T细胞之间的距离存在差异。CyTOF分析显示联合治疗后关键免疫细胞(CCR7+CD127+CD69+CD4+和CD38+CD8+细胞)的频率增加。治疗反应者CCR7+CD4+T细胞增加,而CD38+CD8+T细胞与治疗效果受损有关。

结论

免疫化疗和化疗可增加肿瘤中的TLSs和颗粒酶B+CD8+T细胞。TLS面积与肿瘤面积之比区分反应者与无反应者,CD8+PD-1+T细胞附近的PD-L1+树突状细胞与疗效相关,提示PD-1抑制剂破坏了有害的相互作用。免疫化疗后,CD8+T细胞增加,但CD38+CD8+T细胞功能降低。这些发现突出了复杂的免疫动力学及其对NSCLC治疗的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baa1/11670196/9cad2c85bd00/fimmu-15-1499731-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验