Basova Olga, Gladilin Sergey, Kokhan Vladislav, Kharkevich Mikhalina, Sarycheva Anastasia, Konovalenko Ivan, Chobanu Mikhail, Nikolaev Ilya
Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences, 119333 Moscow, Russia.
Smart Engines Service LLC., 117312 Moscow, Russia.
J Imaging. 2024 Dec 10;10(12):317. doi: 10.3390/jimaging10120317.
Color difference models (CDMs) are essential for accurate color reproduction in image processing. While CDMs aim to reflect perceived color differences (CDs) from psychophysical data, they remain largely untested in wide color gamut (WCG) and high dynamic range (HDR) contexts, which are underrepresented in current datasets. This gap highlights the need to validate CDMs across WCG and HDR. Moreover, the non-geodesic structure of perceptual color space necessitates datasets covering CDs of various magnitudes, while most existing datasets emphasize only small and threshold CDs. To address this, we collected a new dataset encompassing a broad range of CDs in WCG and HDR contexts and developed a novel CDM fitted to these data. Benchmarking various CDMs using STRESS and significant error fractions on both new and established datasets reveals that CAM16-UCS with power correction is the most versatile model, delivering strong average performance across WCG colors up to 1611 cd/m. However, even the best CDM fails to achieve the desired accuracy limits and yields significant errors. CAM16-UCS, though promising, requires further refinement, particularly in its power correction component to better capture the non-geodesic structure of perceptual color space.
色差模型(CDMs)对于图像处理中的精确色彩再现至关重要。虽然色差模型旨在根据心理物理数据反映感知到的色差(CDs),但在广色域(WCG)和高动态范围(HDR)环境中,它们在很大程度上仍未得到测试,而这两种环境在当前数据集中的代表性不足。这一差距凸显了在广色域和高动态范围环境中验证色差模型的必要性。此外,感知颜色空间的非测地线结构需要涵盖各种大小色差的数据集,而大多数现有数据集仅强调小的和阈值色差。为了解决这个问题,我们收集了一个新的数据集,该数据集涵盖了广色域和高动态范围环境中的各种色差,并开发了一种适用于这些数据的新型色差模型。在新数据集和现有数据集上使用STRESS和显著误差分数对各种色差模型进行基准测试表明,具有功率校正的CAM16-UCS是最通用的模型,在高达1611 cd/m²的广色域颜色上具有强大的平均性能。然而,即使是最好的色差模型也未能达到预期的精度极限并产生显著误差。CAM16-UCS虽然很有前景,但需要进一步改进,特别是在其功率校正组件方面,以更好地捕捉感知颜色空间的非测地线结构。