Suppr超能文献

基于RGB和LAB颜色空间,采用堆叠法和投票法结合集成学习方法优化可可豆成熟度分类

Optimization of Cocoa Pods Maturity Classification Using Stacking and Voting with Ensemble Learning Methods in RGB and LAB Spaces.

作者信息

Ayikpa Kacoutchy Jean, Ballo Abou Bakary, Mamadou Diarra, Gouton Pierre

机构信息

Laboratoire Imagerie et Vision Artificielle (ImVia), Université de Bourgogne, 21000 Dijon, France.

Unité de Recherche et d'Expertise Numérique (UREN), Université Virtuelle de Côte d'Ivoire, Abidjan 28 BP 536, Côte d'Ivoire.

出版信息

J Imaging. 2024 Dec 18;10(12):327. doi: 10.3390/jimaging10120327.

Abstract

Determining the maturity of cocoa pods early is not just about guaranteeing harvest quality and optimizing yield. It is also about efficient resource management. Rapid identification of the stage of maturity helps avoid losses linked to a premature or late harvest, improving productivity. Early determination of cocoa pod maturity ensures both the quality and quantity of the harvest, as immature or overripe pods cannot produce premium cocoa beans. Our innovative research harnesses artificial intelligence and computer vision technologies to revolutionize the cocoa industry, offering precise and advanced tools for accurately assessing cocoa pod maturity. Providing an objective and rapid assessment enables farmers to make informed decisions about the optimal time to harvest, helping to maximize the yield of their plantations. Furthermore, by automating this process, these technologies reduce the margins for human error and improve the management of agricultural resources. With this in mind, our study proposes to exploit a computer vision method based on the GLCM (gray level co-occurrence matrix) algorithm to extract the characteristics of images in the RGB (red, green, blue) and LAB (luminance, axis between red and green, axis between yellow and blue) color spaces. This approach allows for in-depth image analysis, which is essential for capturing the nuances of cocoa pod maturity. Next, we apply classification algorithms to identify the best performers. These algorithms are then combined via stacking and voting techniques, allowing our model to be optimized by taking advantage of the strengths of each method, thus guaranteeing more robust and precise results. The results demonstrated that the combination of algorithms produced superior performance, especially in the LAB color space, where voting scored 98.49% and stacking 98.71%. In comparison, in the RGB color space, voting scored 96.59% and stacking 97.06%. These results surpass those generally reported in the literature, showing the increased effectiveness of combined approaches in improving the accuracy of classification models. This highlights the importance of exploring ensemble techniques to maximize performance in complex contexts such as cocoa pod maturity classification.

摘要

早期确定可可豆荚的成熟度不仅关乎保证收获质量和优化产量,还涉及高效的资源管理。快速识别成熟阶段有助于避免因过早或过晚收获而造成的损失,提高生产率。早期确定可可豆荚的成熟度可确保收获的质量和数量,因为未成熟或过度成熟的豆荚无法产出优质的可可豆。我们的创新性研究利用人工智能和计算机视觉技术来变革可可产业,提供精确且先进的工具以准确评估可可豆荚的成熟度。提供客观且快速的评估能使农民就最佳收获时间做出明智决策,有助于使种植园的产量最大化。此外,通过使这一过程自动化,这些技术减少了人为误差的幅度并改善了农业资源管理。考虑到这一点,我们的研究提议利用基于灰度共生矩阵(GLCM)算法的计算机视觉方法,以提取RGB(红、绿、蓝)和LAB(亮度、红与绿之间的轴、黄与蓝之间的轴)颜色空间中的图像特征。这种方法允许进行深入的图像分析,这对于捕捉可可豆荚成熟度的细微差别至关重要。接下来,我们应用分类算法来识别表现最佳的算法。然后通过堆叠和投票技术将这些算法结合起来,使我们的模型能够利用每种方法的优势进行优化,从而保证更稳健和精确的结果。结果表明,算法的组合产生了卓越的性能,尤其是在LAB颜色空间中,投票的准确率为98.49%,堆叠的准确率为98.71%。相比之下,在RGB颜色空间中,投票的准确率为96.59%,堆叠的准确率为97.06%。这些结果超过了文献中通常报道的结果,表明组合方法在提高分类模型准确性方面具有更高的有效性。这凸显了探索集成技术以在诸如可可豆荚成熟度分类等复杂情境中最大化性能的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7538/11727684/b852242489c3/jimaging-10-00327-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验