Zhang Yadong, Wang Yi, Yuan Xiaolong, Zhang Hongling, Zheng Yuan
College of Forestry, Southwest Forestry University, Kunming 650224, China.
Yunnan Key Laboratory of Biodiversity of Gaoligong Mountain, Yunnan Academy of Forestry and Grass-Land, Kunming 650201, China.
J Fungi (Basel). 2024 Nov 27;10(12):826. doi: 10.3390/jof10120826.
Fungal secondary metabolites (SMs) have broad applications in biomedicine, biocontrol, and the food industry. In this study, whole-genome sequencing and annotation of were conducted, followed by comparative genomic analysis with 11 other species of Polyporales to examine genomic variations and secondary metabolite biosynthesis pathways. Additionally, transcriptome data were used to analyze the differential expression of polyketide synthase (PKS), terpene synthase (TPS) genes, and transcription factors (TFs) under different culture conditions. The results show that differs from other fungal species in genome size (34.58 Mb) and GC content (50.72%). The antibiotics and Secondary Metabolites Analysis Shell (AntiSMASH) analysis reveals significant variation in the number of SM biosynthetic gene clusters (SMBGCs) across the 12 species (12-29), with containing 25 SMBGCs: 4 PKS, 6 non-ribosomal peptide synthetase (NRPS), and 15 TPS clusters. The gene is hypothesized to be involved in the biosynthesis of orsellinic acid or its derivatives, while might catalyze the synthesis of 6-methylsalicylic acid (6MSA) and its derivatives. The genes are suggested to synthesize tetracyclic sesquiterpene type B trichothecene compounds, while may be involved in the synthesis of δ-cadinol, β-copaene, and α-murolene analogs or derivatives. Comparative genomic analysis shows that the genome size of is similar to that of , with comparable SMs. Both species share four types of PKS domains and five distinct types of TPS. Additionally, exhibits a high degree of similarity to , despite belonging to a different genus within the same family. Transcriptome analysis reveals significant variation in the expression levels of PKS and TPS genes across different cultivation conditions. The and genes, along with nine , are significantly upregulated under three solid culture conditions. In contrast, under three different liquid culture conditions, the , , and genes, along with twelve , exhibit higher activity. Co-expression network analysis and binding site prediction in the promoter regions of and genes suggest that and regulate expression. , , , and likely modulate transcriptional activity. and expression is likely regulated by and , respectively. This study provides new insights into the regulatory mechanisms of SMs in and offers potential strategies for enhancing the biosynthesis of target compounds through artificial intervention.
真菌次级代谢产物(SMs)在生物医药、生物防治和食品工业中具有广泛应用。在本研究中,对[具体物种]进行了全基因组测序和注释,随后与多孔菌目其他11个物种进行比较基因组分析,以研究基因组变异和次级代谢产物生物合成途径。此外,利用转录组数据分析聚酮合酶(PKS)、萜类合酶(TPS)基因和转录因子(TFs)在不同培养条件下的差异表达。结果表明,[具体物种]在基因组大小(34.58 Mb)和GC含量(50.72%)方面与其他真菌物种不同。抗生素和次级代谢产物分析软件(AntiSMASH)分析显示,12个物种的SM生物合成基因簇(SMBGCs)数量存在显著差异(12 - 29个),[具体物种]含有25个SMBGCs:4个PKS、6个非核糖体肽合成酶(NRPS)和15个TPS簇。推测[具体基因]参与苔色酸或其衍生物的生物合成,而[具体基因]可能催化6 - 甲基水杨酸(6MSA)及其衍生物的合成。[具体基因]被认为可合成四环倍半萜B型单端孢霉烯化合物,而[具体基因]可能参与δ - 杜松醇、β - 可巴烯和α - 穆罗烯类似物或衍生物的合成。比较基因组分析表明,[具体物种]的基因组大小与[另一物种]相似,次级代谢产物也具有可比性。这两个物种共享四种类型的PKS结构域和五种不同类型的TPS。此外,[具体物种]与[另一物种]表现出高度相似性,尽管它们属于同一科内的不同属。转录组分析揭示了PKS和TPS基因在不同培养条件下表达水平的显著差异。[具体基因]和[具体基因]以及九个[具体基因]在三种固体培养条件下显著上调。相反,在三种不同的液体培养条件下,[具体基因]、[具体基因]和[具体基因]以及十二个[具体基因]表现出更高的活性。[具体基因]和[具体基因]启动子区域的共表达网络分析和[具体转录因子]结合位点预测表明,[具体转录因子]和[具体转录因子]调节[具体基因]的表达。[具体转录因子]、[具体转录因子]、[具体转录因子]和[具体转录因子]可能调节[具体基因]的转录活性。[具体基因]和[具体基因]的表达可能分别受[具体转录因子]和[具体转录因子]的调控。本研究为[具体物种]中次级代谢产物的调控机制提供了新见解,并为通过人工干预增强目标化合物的生物合成提供了潜在策略。