Yan Tao, Xie Yun-Yi, Zhou Bo, Kuang Xu, Li Qing-Zhi, Zhao Feng-Qi, Li Qian-Dong, He Bin
Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611730, China.
Fish Resources and Environment in the Upper Reaches of the Yangtze River Observation and Research Station of Sichuan Province, Chengdu 611731, China.
Metabolites. 2024 Dec 17;14(12):710. doi: 10.3390/metabo14120710.
Rice-fish farming is an ancient and enduring aquaculture model in China. This study aimed to assess the variations in digestive enzymes, antioxidant properties, glucose metabolism, and nutritional content between reared in paddy fields and ponds. Notably, the levels of amylase and trypsin in from rice paddies were considerably higher compared to those from ponds. Additionally, the hepatic catalase (CAT) activity in fish from paddy (2.45 ± 0.16 U/mg) exceeded that of their pond counterparts (2.27 ± 0.25 U/mg). Regarding glucose metabolism, the activities of key enzymes such as Na+/K+-ATPase (NKA) (paddy: 82.45 ± 6.11 U/g; pond: 78.53 ± 7.18 U/g), hexokinase (HK) (paddy: 9.55 ± 0.58 U/g; pond: 8.83 ± 0.72 U/g), glucokinase (GK) (paddy: 4.09 ± 0.21 IU/g; pond: 3.44 ± 0.33 IU/g), glucose-6-phosphatase (G6Pase) (paddy: 85.71 ± 4.49 IU/g; pond: 79.12 ± 9.34 IU/g), and glucose-6-phosphate dehydrogenase (G6PDH) (paddy: 47.23 ± 3.22 U/g; pond: 42.31 ± 4.93 U/g) were significantly elevated in rice paddy-cultured fish compared to those in ponds. Conversely, phosphor-pyruvate kinase (PK) (paddy: 418.15 ± 31.89 U/g; pond: 570.16 ± 56.06 U/g) activity was markedly reduced in the paddy group. Hepatic glycogen content (paddy: 15.70 ± 0.98 ng/g; pond: 14.91 ± 1.24 ng/g) was also substantially higher in fish from paddy, although no significant differences in muscle glycogen content (paddy: 7.14 ± 0.59 ng/g; pond: 6.70 ± 0.52 ng/g) were observed between the two environments. In terms of nutritional composition, fish raised in paddy exhibited higher crude protein (paddy: 18.46 ± 0.47 g/100 g muscle; pond: 15.57 ± 0.25 g/100 g muscle) and crude ash (paddy: 1.19 ± 0.02 g/100 g muscle; pond: 0.97 ± 0.02 g/100 g muscle) than those in ponds, whereas the crude fat (paddy: 0.87 ± 0.04 g/100 g muscle; pond: 1.66 ± 0.04 g/100 g muscle) was notably lower in paddy fish. Furthermore, fish from rice paddies had a greater total content of monounsaturated fatty acids (MUFA) (paddy: 4.25 ± 0.24 g/100 g muscle; pond: 6.73 ± 0.27 g/100 g muscle), non-essential amino acids (NEAA) (paddy: 9.04 ± 0.3 g/100 g muscle; pond: 7.19 ± 0.21 g/100 g muscle), and delicious amino acids (DAA) (paddy: 7.11 ± 0.2 g/100 g muscle; pond: 5.45 ± 0.19 g/100 g muscle) compared to those from pond cultures. These findings suggest that rice-fish co-culture systems can yield healthier and more environmentally sustainable aquatic products by improving feed digestion and optimizing nutrient metabolism.
稻鱼共生养殖是中国一种古老且持久的水产养殖模式。本研究旨在评估稻田养殖和池塘养殖的鱼在消化酶、抗氧化特性、葡萄糖代谢及营养成分方面的差异。值得注意的是,稻田养殖的鱼体内淀粉酶和胰蛋白酶水平相比池塘养殖的鱼显著更高。此外,稻田养殖的鱼肝过氧化氢酶(CAT)活性(2.45±0.16 U/mg)超过池塘养殖的鱼(2.27±0.25 U/mg)。在葡萄糖代谢方面,稻田养殖的鱼体内关键酶如钠钾ATP酶(NKA)(稻田:82.45±6.11 U/g;池塘:78.53±7.18 U/g)、己糖激酶(HK)(稻田:9.55±0.58 U/g;池塘:8.83±0.72 U/g)、葡萄糖激酶(GK)(稻田:4.09±0.21 IU/g;池塘:3.44±0.33 IU/g)、葡萄糖6磷酸酶(G6Pase)(稻田:85.71±4.49 IU/g;池塘:79.12±9.34 IU/g)和葡萄糖6磷酸脱氢酶(G6PDH)(稻田:47.23±3.22 U/g;池塘:42.31±4.93 U/g)的活性相比池塘养殖的鱼显著升高。相反,磷酸丙酮酸激酶(PK)(稻田:418.15±31.89 U/g;池塘:570.16±56.06 U/g)活性在稻田组显著降低。稻田养殖的鱼肝糖原含量(稻田:15.70±0.98 ng/g;池塘:14.91±1.24 ng/g)也显著高于池塘养殖的鱼,尽管在两种养殖环境下鱼肌肉中的糖原含量没有显著差异(稻田:7.14±0.59 ng/g;池塘:6.70±0.52 ng/g)。在营养成分方面,稻田养殖的鱼相比池塘养殖的鱼具有更高的粗蛋白(稻田:18.46±0.47 g/100g肌肉;池塘:15.57±0.25 g/100g肌肉)和粗灰分(稻田:1.19±0.02 g/100g肌肉;池塘:0.97±0.02 g/100g肌肉),而稻田养殖的鱼粗脂肪含量(稻田:0.87±0.04 g/100g肌肉;池塘:1.66±0.04 g/100g肌肉)显著更低。此外,稻田养殖的鱼相比池塘养殖的鱼具有更高的单不饱和脂肪酸(MUFA)总含量(稻田:4.25±0.24 g/100g肌肉;池塘:6.73±0.27 g/100g肌肉)、非必需氨基酸(NEAA)(稻田:9.04±0.3 g/100g肌肉;池塘:7.19±0.21 g/100g肌肉)和呈味氨基酸(DAA)(稻田:7.11±0.2 g/100g肌肉;池塘:5.45±0.19 g/100g肌肉)。这些发现表明,稻鱼共生养殖系统可以通过改善饲料消化和优化营养代谢产出更健康且更具环境可持续性的水产品。