Suppr超能文献

用于成像逆问题的熵正则化迭代加权收缩阈值算法(ERIWSTA)

Entropy-Regularized Iterative Weighted Shrinkage-Thresholding Algorithm (ERIWSTA) for inverse problems in imaging.

作者信息

Ma Limin, Wu Bingxue, Yao Yudong, Teng Yueyang

机构信息

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning Province, China.

Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ, United States of America.

出版信息

PLoS One. 2024 Dec 27;19(12):e0311227. doi: 10.1371/journal.pone.0311227. eCollection 2024.

Abstract

The iterative shrinkage-thresholding algorithm (ISTA) is a classic optimization algorithm for solving ill-posed linear inverse problems. Recently, this algorithm has continued to improve, and the iterative weighted shrinkage-thresholding algorithm (IWSTA) is one of the improved versions with a more evident advantage over the ISTA. It processes features with different weights, making different features have different contributions. However, the weights of the existing IWSTA do not conform to the usual definition of weights: their sum is not 1, and they are distributed over an extensive range. These problems may make it challenging to interpret and analyze the weights, leading to inaccurate solution results. Therefore, this paper proposes a new IWSTA, namely, the entropy-regularized IWSTA (ERIWSTA), with weights that are easy to calculate and interpret. The weights automatically fall within the range of [0, 1] and are guaranteed to sum to 1. At this point, considering the weights as the probabilities of the contributions of different attributes to the model can enhance the interpretation ability of the algorithm. Specifically, we add an entropy regularization term to the objective function of the problem model and then use the Lagrange multiplier method to solve the weights. Experimental results of a computed tomography (CT) image reconstruction task show that the ERIWSTA outperforms the existing methods in terms of convergence speed and recovery accuracy.

摘要

迭代收缩阈值算法(ISTA)是一种用于解决不适定线性逆问题的经典优化算法。近年来,该算法不断改进,迭代加权收缩阈值算法(IWSTA)是改进版本之一,相较于ISTA具有更明显的优势。它对具有不同权重的特征进行处理,使不同特征具有不同贡献。然而,现有IWSTA的权重不符合权重的通常定义:它们的和不为1,且分布范围广泛。这些问题可能导致权重的解释和分析具有挑战性,从而导致求解结果不准确。因此,本文提出了一种新的IWSTA,即熵正则化IWSTA(ERIWSTA),其权重易于计算和解释。权重自动落在[0, 1]范围内,并保证总和为1。此时,将权重视为不同属性对模型贡献的概率可以增强算法的解释能力。具体而言,我们在问题模型的目标函数中添加一个熵正则化项,然后使用拉格朗日乘数法求解权重。计算机断层扫描(CT)图像重建任务的实验结果表明,ERIWSTA在收敛速度和恢复精度方面优于现有方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d10b/11676579/b42126b2a78f/pone.0311227.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验