Suppr超能文献

利用高光谱和叶绿素荧光成像评估小麦抗旱性

Evaluation of wheat drought resistance using hyperspectral and chlorophyll fluorescence imaging.

作者信息

Yang Yucun, Liu Xinran, Zhao Yuqing, Tang Gaijuan, Nan Rui, Zhang Yuzhen, Sun Fengli, Xi Yajun, Zhang Chao

机构信息

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, China; Key Laboratory of Wheat Biology and Genetic Improvement on Northwestern China, Ministry of Agriculture and Rural Affairs, Xianyang, 712100, China.

Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, China.

出版信息

Plant Physiol Biochem. 2025 Feb;219:109415. doi: 10.1016/j.plaphy.2024.109415. Epub 2024 Dec 17.

Abstract

Photosynthesis drives crop growth and production, and strongly affects grain yields; therefore, it is an ideal trait for wheat drought resistance breeding. However, studies of the negative effects of drought stress on wheat photosynthesis rates have lacked accurate evaluation methods, as well as high-throughput techniques. We investigated photosynthetic capacity under drought stress in wheat varieties with varying degrees of drought stress resistance using hyperspectral and chlorophyll fluorescence (ChlF) imaging data. We analyzed various morpho-physiological traits involved in wheat drought tolerance, including tiller number, leaf relative water content, and malondialdehyde content, to determine the relationships between drought resistance and hyperspectral and ChlF data. The results showed that the spectral first derivative ratio (FDR) between drought stress and control conditions in the 680-760 nm region was closely related to photosynthetic capacity and drought tolerance and that hyperspectral imaging can be used to monitor ChlF parameters, with bands sensitive to ChlF identified in two spectral regions (539-764 nm and 832-989 nm). The spectral first derivative at 989 nm had the strongest linear relationship with the minimal fluorescence (R = 0.49). An uninformative variable elimination algorithm indicated that FDRs in the green (504-609 nm), red (724-751 nm), and near-infrared (944-946 nm) light regions had great potential as indices of drought resistance. A support vector machine model based on the FDRs of these characteristic bands identified wheat drought resistance with 97.33% accuracy. These findings provide insight into the application of high-throughput technologies in studying drought resistance and photosynthesis in wheat.

摘要

光合作用驱动作物生长和产量形成,并对谷物产量有强烈影响;因此,它是小麦抗旱育种的理想性状。然而,关于干旱胁迫对小麦光合速率负面影响的研究缺乏准确的评估方法以及高通量技术。我们利用高光谱和叶绿素荧光(ChlF)成像数据,研究了不同抗旱程度的小麦品种在干旱胁迫下的光合能力。我们分析了小麦耐旱性涉及的各种形态生理性状,包括分蘖数、叶片相对含水量和丙二醛含量,以确定抗旱性与高光谱和ChlF数据之间的关系。结果表明,680 - 760 nm区域干旱胁迫与对照条件下的光谱一阶导数比(FDR)与光合能力和耐旱性密切相关,并且高光谱成像可用于监测ChlF参数,在两个光谱区域(539 - 764 nm和832 - 989 nm)中鉴定出了对ChlF敏感的波段。989 nm处的光谱一阶导数与最小荧光的线性关系最强(R = 0.49)。无信息变量消除算法表明,绿色(504 - 609 nm)、红色(724 - 751 nm)和近红外(944 - 946 nm)光区域的FDR作为抗旱指标具有很大潜力。基于这些特征波段FDR的支持向量机模型识别小麦抗旱性的准确率为97.33%。这些发现为高通量技术在研究小麦抗旱性和光合作用中的应用提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验