Suppr超能文献

融合临床和影像组学评分的多模态深度学习用于预测早期肺腺癌淋巴结转移

Multimodal Deep Learning Fusing Clinical and Radiomics Scores for Prediction of Early-Stage Lung Adenocarcinoma Lymph Node Metastasis.

作者信息

Xia Chengcheng, Zuo Minjing, Lin Ze, Deng Libin, Rao Yulian, Chen Wenxiang, Chen Jinqin, Yao Weirong, Hu Min

机构信息

School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang 330006, China (C.X., L.D., W.C., M.H.); Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang 330006, China (C.X., L.D., W.C., M.H.).

Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China (M.Z.); Intelligent Medical Imaging of Jiangxi Key Laboratory, Nanchang 330006, China (M.Z.).

出版信息

Acad Radiol. 2025 May;32(5):2977-2989. doi: 10.1016/j.acra.2024.12.018. Epub 2024 Dec 27.

Abstract

RATIONALE AND OBJECTIVES

To develop and validate a multimodal deep learning (DL) model based on computed tomography (CT) images and clinical knowledge to predict lymph node metastasis (LNM) in early lung adenocarcinoma.

MATERIALS AND METHODS

A total of 724 pathologically confirmed early invasive lung adenocarcinoma patients were retrospectively included from two centers. Clinical and CT semantic features of the patients were collected, and 3D radiomics features were extracted from nonenhanced CT images. We proposed a multimodal feature fusion DL network based on the InceptionResNetV2 architecture, which can effectively extract and integrate image and clinical knowledge to predict LNM.

RESULTS

A total of 524 lung adenocarcinoma patients from Center 1 were randomly divided into training (n=418) and internal validation (n=106) sets in a 4:1 ratio, while 200 lung adenocarcinoma patients from Center 2 served as the independent test set. Among the 16 collected clinical and imaging features, 8 were selected: gender, serum carcinoembryonic antigen, cytokeratin 19 fragment antigen 21-1, neuron-specific enolase, tumor size, location, density, and centrality. From the 1595 extracted radiomics features, six key features were identified. The CS-RS-DL fusion model achieved the highest area under the receiver operating characteristic curve in both the internal validation set (0.877) and the independent test set (0.906) compared to other models. The Delong test results for the independent test set indicated that the CS-RS-DL model significantly outperformed the clinical model (0.844), radiomics model (0.850), CS-RS model (0.872), single DL model (0.848), and the CS-DL model (0.875) (all P<0.05). Additionally, the CS-RS-DL model exhibited the highest sensitivity (0.941) and average precision (0.642).

CONCLUSION

The knowledge derived from clinical, radiomics, and DL is complementary in predicting LNM in lung adenocarcinoma. The integration of clinical and radiomics scores through DL can significantly improve the accuracy of lymph node status assessment.

摘要

原理与目的

基于计算机断层扫描(CT)图像和临床知识开发并验证一种多模态深度学习(DL)模型,以预测早期肺腺癌中的淋巴结转移(LNM)。

材料与方法

回顾性纳入来自两个中心的724例经病理证实的早期浸润性肺腺癌患者。收集患者的临床和CT语义特征,并从非增强CT图像中提取三维放射组学特征。我们提出了一种基于InceptionResNetV2架构的多模态特征融合DL网络,该网络可以有效提取并整合图像和临床知识以预测LNM。

结果

来自中心1的524例肺腺癌患者以4:1的比例随机分为训练组(n = 418)和内部验证组(n = 106),而来自中心2的200例肺腺癌患者作为独立测试组。在收集的16项临床和影像特征中,选择了8项:性别、血清癌胚抗原、细胞角蛋白19片段抗原21-1、神经元特异性烯醇化酶、肿瘤大小、位置、密度和中心性。从提取的1595个放射组学特征中,确定了6个关键特征。与其他模型相比,CS-RS-DL融合模型在内部验证组(0.877)和独立测试组(0.906)中均获得了受试者工作特征曲线下的最大面积。独立测试组的德龙检验结果表明,CS-RS-DL模型显著优于临床模型(0.844)、放射组学模型(0.850)、CS-RS模型(0.872)、单DL模型(0.848)和CS-DL模型(0.875)(所有P<0.05)。此外,CS-RS-DL模型表现出最高的敏感性(0.941)和平均精度(0.642)。

结论

临床、放射组学和DL所获得的知识在预测肺腺癌的LNM方面具有互补性。通过DL整合临床和放射组学评分可显著提高淋巴结状态评估的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验