Liu Xinyu, Xia Guoen, Zhang Xianquan, Ma Wenbin, Yu Chunqiang
College of Computer Science and Engineering, Guangxi Normal University, Guilin, 541000, China.
College of Business Administration, Guangxi University, Nanning, 530000, China.
Sci Rep. 2024 Dec 28;14(1):30707. doi: 10.1038/s41598-024-79603-9.
In today's competitive market environment, accurately identifying potential churn customers and taking effective retention measures are crucial for improving customer retention and ensuring the sustainable development of an organization. However, traditional machine learning algorithms and single deep learning models have limitations in extracting complex nonlinear and time-series features, resulting in unsatisfactory prediction results. To address this problem, this study proposes a hybrid neural network-based customer churn prediction model, CCP-Net. In the data preprocessing stage, the ADASYN sampling algorithm balances the sample sizes of churned and non-churned customers to eliminate the negative impact of sample imbalance on the model performance. In the feature extraction stage, CCP-Net uses Multi-Head Self-Attention to learn the global dependencies of the input sequences, combines with BiLSTM to capture the long-term dependencies in the sequential data, and uses CNN to extract the local features, and ultimately generates the prediction results. Experimental results of cross-validation on Telecom, Bank, Insurance, and News datasets show that CCP-Net outperforms the comparison algorithms in all performance metrics. For example, CCP-Net achieves a Precision of 92.19% on the Telecom dataset, 91.96% on the Bank dataset, 95.87% on the Insurance dataset, and 95.12% on the News dataset, which compares to other hybrid neural network models, the performance improvement of CCP-Net ranges from 1% to 3%. These results indicate that the design of the CCP-Net model effectively improves the accuracy and robustness of churn prediction, enabling it to be widely applied to different industries, especially in the financial, telecommunication, and media fields, to provide more comprehensive and effective churn management strategies for enterprises.
在当今竞争激烈的市场环境中,准确识别潜在的流失客户并采取有效的留存措施对于提高客户留存率和确保组织的可持续发展至关重要。然而,传统的机器学习算法和单一的深度学习模型在提取复杂的非线性和时间序列特征方面存在局限性,导致预测结果不尽人意。为了解决这个问题,本研究提出了一种基于混合神经网络的客户流失预测模型CCP-Net。在数据预处理阶段,ADASYN采样算法平衡了流失客户和未流失客户的样本大小,以消除样本不平衡对模型性能的负面影响。在特征提取阶段,CCP-Net使用多头自注意力机制学习输入序列的全局依赖性,结合双向长短期记忆网络(BiLSTM)捕捉序列数据中的长期依赖性,并使用卷积神经网络(CNN)提取局部特征,最终生成预测结果。在电信、银行、保险和新闻数据集上的交叉验证实验结果表明,CCP-Net在所有性能指标上均优于比较算法。例如,CCP-Net在电信数据集上的精确率达到92.19%,在银行数据集上为91.96%,在保险数据集上为95.87%,在新闻数据集上为95.12%。与其他混合神经网络模型相比,CCP-Net的性能提升幅度在1%到3%之间。这些结果表明,CCP-Net模型的设计有效地提高了流失预测的准确性和鲁棒性,使其能够广泛应用于不同行业,特别是在金融、电信和媒体领域,为企业提供更全面、有效的流失管理策略。