Balafrej Ismael, Dahmane Mohamed
Computer Research Institute of Montreal- CRIM, Vision Research Department, Montreal, Qc., Canada.
Sci Rep. 2024 Dec 28;14(1):31084. doi: 10.1038/s41598-024-82223-y.
The proliferation of deepfake generation has become increasingly widespread. Current solutions for automatically detecting and classifying generated content require substantial computational resources, making them impractical for use by the average non-expert individual, particularly from edge computing applications. In this paper, we propose a series of techniques to accelerate the inference speed of deepfake detection on video data. We also draw inspiration from steganalysis approaches to expose deepfakes as any secret payloads encoded in the image. Furthermore, some key considerations were identified to significantly reduce the size of the core convolutional neural network. The experiment yielded competitive results when evaluated on two second-generation deepfake datasets, namely Celeb-DFv2 and DFDC, while requiring only a fraction of the typical computational cost and resources.
深度伪造生成技术的扩散日益广泛。当前用于自动检测和分类生成内容的解决方案需要大量计算资源,这使得它们对于普通非专业人士来说不切实际,特别是在边缘计算应用中。在本文中,我们提出了一系列技术来加速视频数据上深度伪造检测的推理速度。我们还从隐写分析方法中获得灵感,将深度伪造暴露为图像中编码的任何秘密信息。此外,还确定了一些关键因素以显著减小核心卷积神经网络的规模。在两个第二代深度伪造数据集,即Celeb-DFv2和DFDC上进行评估时,实验取得了具有竞争力的结果,同时只需要典型计算成本和资源的一小部分。