IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6111-6121. doi: 10.1109/TPAMI.2021.3093446. Epub 2022 Sep 14.
We propose a method for detecting face swapping and other identity manipulations in single images. Face swapping methods, such as DeepFake, manipulate the face region, aiming to adjust the face to the appearance of its context, while leaving the context unchanged. We show that this modus operandi produces discrepancies between the two regions (e.g., Fig. 1). These discrepancies offer exploitable telltale signs of manipulation. Our approach involves two networks: (i) a face identification network that considers the face region bounded by a tight semantic segmentation, and (ii) a context recognition network that considers the face context (e.g., hair, ears, neck). We describe a method which uses the recognition signals from our two networks to detect such discrepancies, providing a complementary detection signal that improves conventional real versus fake classifiers commonly used for detecting fake images. Our method achieves state of the art results on the FaceForensics++ and Celeb-DF-v2 benchmarks for face manipulation detection, and even generalizes to detect fakes produced by unseen methods.
我们提出了一种在单张图像中检测人脸交换和其他身份操纵的方法。人脸交换方法,如 DeepFake,操纵人脸区域,旨在调整人脸以适应其上下文的外观,同时保持上下文不变。我们表明,这种操作模式会在两个区域之间产生差异(例如,图 1)。这些差异提供了可利用的操纵明显迹象。我们的方法涉及两个网络:(i)一个面部识别网络,它考虑由紧密语义分割限定的面部区域,以及(ii)一个上下文识别网络,它考虑面部上下文(例如,头发、耳朵、脖子)。我们描述了一种使用我们两个网络的识别信号来检测这种差异的方法,提供了一种补充检测信号,该信号可提高常用于检测伪造图像的传统真实与伪造分类器的性能。我们的方法在人脸伪造检测的 FaceForensics++和 Celeb-DF-v2 基准测试中取得了最先进的结果,甚至可以推广到检测看不见的方法生成的伪造品。