Suppr超能文献

一种新型自适应分数阶累加灰色模型及其在中国能源消耗预测中的应用。

A novel conformable fractional-order accumulation grey model and its applications in forecasting energy consumption of China.

作者信息

Chen Yuzhen, Gong Wenhao, Li Suzhen, Guo Shuangbing

机构信息

School of Mathematical Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China.

School of Management, University of Shanghai for Science and Technology, Shanghai, 200093, China.

出版信息

Sci Rep. 2024 Dec 28;14(1):31028. doi: 10.1038/s41598-024-82128-w.

Abstract

Accurate forecasting of energy consumption demand is crucial to optimize resources and achieve sustainable development goals. However, the energy system is affected by many factors, which are complex and highly uncertain. Therefore, a novel grey model (IBCFGMP (1,1,N)) is proposed, integrating multiple optimization techniques such as background value optimization, initial condition optimization, fractional-order accumulation optimization, and grey action quantity optimization. First, this paper deduces the time response function of the optimization model. The relevant parameters of the model can be found using the particle swarm optimization algorithm. Then, the properties of the model are studied, and it is found that the optimized model have stronger universality and stability. Finally, the model is applied to predict and analyze the energy consumption of China. The prediction results indicate that China's consumption of hydroelectricity, nuclear energy, and coal will be 12.693 exajoules, 5.550 exajoules, and 98.850 exajoules in 2026, respectively. The research results will provide a scientific basis for rationally optimizing resource allocation and realizing the sustainable development of clean energy.

摘要

准确预测能源消费需求对于优化资源和实现可持续发展目标至关重要。然而,能源系统受到许多因素的影响,这些因素复杂且高度不确定。因此,提出了一种新型灰色模型(IBCFGMP(1,1,N)),该模型整合了背景值优化、初始条件优化、分数阶累加优化和灰色作用量优化等多种优化技术。首先,本文推导了优化模型的时间响应函数。利用粒子群优化算法可以找到模型的相关参数。然后,对模型的性质进行了研究,发现优化后的模型具有更强的通用性和稳定性。最后,将该模型应用于中国能源消费的预测与分析。预测结果表明,2026年中国水电、核能和煤炭的消费量将分别达到12.693艾焦、5.550艾焦和98.850艾焦。研究结果将为合理优化资源配置和实现清洁能源可持续发展提供科学依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/877b/11680593/1fdaed8e650d/41598_2024_82128_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验